Research Paper
The Effect of Chemical Additives in Refolding of Recombinant Vascular Endothelial Growth Factor

Mohsen Khaki1,*, Hamid Abtahi1, Ghasem Mosayebi1,2

1. Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.

ABSTRACT

Background and Aim: The most important problem in the production of recombinant proteins in prokaryotic cells is the disruption of the function of these proteins due to their altered natural structure. The aim of present study is to identify the best chemicals dialysis buffer additives in order to improve the protein structure of recombinant Vascular Endothelial Growth Factor (VEGF).

Methods & Materials: In this experimental study, different chemicals additives were selected using relevant software. After adding these additives to the recombinant VEGF dialysis buffer, their effect on the refolding of recombinant proteins and the differentiation of mesenchymal stem cells into endothelial cells was assessed by flow cytometry method.

Ethical Considerations: This study obtained its ethical approval from the Research Ethics Committee of Arak University of Medical Sciences (Code: ARAKMU.REC.1394.199).

Results: The results showed that the addition of arginine, cysteine and dithiothreitol (DTT) to dialysis buffer increases the differentiation of mesenchymal stem cells into endothelial cells. With the presence of sodium chloride (NaCl), cysteine, arginine and DTT in treated cells, the rate of specific Cluster Differentiation (CD) markers of endothelial cell (CD31/144) was at the highest level.

Conclusion: Adding cysteine, arginine, DTT and NaCl to the dialysis buffer of recombinant VEGF had the greatest effect on the mesenchymal cell differentiation into endothelial cells.

Key words: Cell differentiation, Vascular Endothelial Growth Factor, Chemical additives, Cluster Differentiation marker

Extended Abstract

Introduction

Vascular Endothelial Growth Factor (VEGF) is a glycoprotein that is produced in various cells including macrophages, platelets, keratinocytes, renal mesangial cells as well as a variety of cancer cells. VEGF has angiogenic and mitogenic roles, differentiating cells, enhancing angiogenesis and repairing tissues. The most common and most important subset of this protein is VEGF-A-165 [3]. Production of recombinant proteins including VEGF in prokaryotic cells, impair their function due to disruption of protein structure. Since the process of modifying the protein structure by conventional methods such as chemical dialysis is time consuming and expensive, in the present study, appropriate additives were selected for structural modification and restoration of the activity of VEGF, and then these additives were used for chemical dialysis of the recombinant VEGF in vitro.

* Corresponding Author:
Hamid Abtahi, PhD.
Address: Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
Tel: +98 (86) 34173502
E-mail: abtahi@arakmu.ac.ir
Methods and Materials

In this experimental in vitro study, the gene encoding VEGF-A165 (Acc: NM_001287044), was extracted from NCBI database. By adding the sequence of BamHI and XhoI restriction enzymes to the gene, the fragment was synthesized by the Biomatics Company. After transformation of the gene into E. coli DH5α proliferative cells and E. coli BL21 (DE3) expression cells, protein expression induction was performed with IPTG [7-9]. Recombinant protein was extracted by affinity chromatography and Ni-NTA kit. The presence of protein was confirmed by SDS-PAGE method. To simulate the structural modification process of proteinase, ExPASy server, aggrescan server, PDB, Chimera Photo, PubChem, Hyperchem, AutoDock and LigPlot software were used. The selected additives used were used in these nine dialysis programs and the product of each program was evaluated by flow cytometry for treatment of Mesenchymal Stem Cell (MSC) and its differentiation into endothelial cell (EC). Commercial protein (ab9571, Abcam Co.) was used as positive control. Data were analyzed by independent T-test and Mann-Whitney U test in SPSS software considering a significance level of less than 0.05.

Results

The results of the LigPlot software showed that weaker hydrogen bonds were formed between cysteine and VEGF compared to other amino acids. The aggrescan server data showed sensitive areas of protein aggregation. Based on flow cytometry results, the rate of specific cluster differentiation markers (CD31/CD144) in the recombinant VEGF-treated group was 27%; in the commercial protein-treated group, 17%; and in the control group, 15%.

Discussion

The greater impact of recombinant VEGF than commercial protein on cell differentiation reported in this study may be due to the protein structure modification by using software and using appropriate chemical additives for chemical dialysis of this protein. According to the results of this study, cysteine had the most effect on the structural modification of recombinant VEGF. This result was consistent with the software results because the level of bonding energy between this amino acid and VEGF was lower and the hydrogen bonds between them were higher than the others. Cysteine can facilitate cross-linking of the disulfide bonds in the structure of recombinant VEGF. The effect of cysteine along with dithiothreitol (DTT) on modifying the structure of the recombinant VEGF is remarkable because DTT acts as a redox compound of the common disulfide bonds, which occurs more frequently under alkaline buffer conditions. Ethylenediaminetetraacetic Acid (EDTA), arginine and triton X-100 also had a reinforcing role in modifying the structure of recombinant VEGF. EDTA is a chelator and inhibitor of metalloprotease enzymes and reduces oxidation reactions and enhances protein solubility. Triton X-100 is a non-ionic surfactant and a lubricant detergent; it stops protein aggregation and by inducing the solubility of the oligomeric proteins, supports the refolding process.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its Ethical approval from the Research Ethics Committee of Arak University of Medical Sciences (Code: ARAKMU. REC.1394.199). All experiments in this study on living cells in standard laboratory conditions, were carried out in compliance with the principles of biosafety.

Funding

This study is a research proposal approved by Arak University of Medical Sciences (Code: 2356) and received financial support from the Deputy for Research and Technology.

Authors’ contributions

Scientific design and management: Hamid Abtahi; Design and implementation of flow cytometry: Ghasem Mosibi; Implementation of practical research process and writing an article: Mohsen Khaki.

Conflicts of interest

The authors would like to thank the Deputy for Research and Technology of Arak University of Medical Sciences for their valuable support.
ارزیابی تأثیر مواد افزودنی شیمیایی در تاخوردگی مجدد فاکتور رشد اندوتلیال عروقی نوترکیب

محسن خانی ۱، حمید ابطحی ۲، قاسم مسیبی ۳

۱. مرکز تحقیقات پزشکی و مولکولی، دانشگاه علوم پزشکی اراک، اراک، ایران

مقدمه
فاکتور رشد اندوتلیال عروقی یک گلیکوپروتئین هومودایمر با وزن 146 کیلو دالتون است که در سلول های مختلف از 34-45 مولکولی، جمله ماکروفاژ، بالاترین، سیستئین و DDT، واکنش نورتکیب می‌شود. بالاترین، فاکتور رشد اندوتلیال عروقی، که در مرحله حضور به دلیل تغییر فضایی و خارج شدن از وضعیت طبیعی، فعالیت این پروتئین را در پدیده رگ زایی منظور می‌شود که روی باند 8، شامل ژن کدکننده VEGF-A-121 انسانی، قرار دارند. از بیان این ژن، چرخه کم و نیز مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A-165 است که روی باند 8، شامل چرخه کم و نیز مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی مولکول‌های VEGF-A, B, C, D, E, F که تولید می‌شود، کنترل می‌شود که روی m

1. Refolding

2. Placental growth factor (PLGF)

3. VEGF-A-121

4. VEGF-A-165

5. VEGF-A-183

6. VEGF-A-189

7. VEGF-A-165

8. VEGF-A-145

9. VEGF-A-167

10. VEGF-A-141
پروتئین هدف تعیین شد.

عطف به مطالب ذکر شده در قسمت مقدمه در خصوص تولید کلیه مراحل مربوط به تولید محصول، اجرا شد. غلظت پروتئین تخلیص شده، در ادامه این طرح، مقدار مورد نظر در محصول پروتئین ساختار سه بعدی اسید امینه های پروتئین از دست آمد. برای تأیید حضور پروتئین گروه نیترتریک اسید، استفاده شد.


حرفه‌ای پروتئنومگرافی تملبایی و کیت نیترتریک (SDS-PAGE) استفاده شد. تا این‌گونه حضور پروتئینی در محصول مورد نظر مورد اطمینان قرار گرفت. آنها با استفاده از این‌گونه تکنیک‌ها با توجه به مکانیسم پروتئین نیترتریک، همزمان با استفاده از نرم‌افزار (داکینگ)، ساختار سه بعدی اسید امینه های پروتئین پروتئین، به مراتب بیشتر نیترتریک است. برای تأیید حضور پروتئین، سلول‌های صدها و تاخیرگر، از طریق نیترتریک به محصول، مقدار مورد نظر در محصول پروتئین استخراج شد.

174
یافته‌ها

به استفاده از افزودنی Expansی pH ایزو الکتریک VEGF-A (50٪) در نظر گرفته شد تا نتایج تولید های تکراری دیالیزه هست مانند تا نتایج تولید های تکراری می‌باشد. در نتایج تولید های تکراری مشخص می‌کند که بین سیستماتیک و هدایا pH VEGF گونه‌ای که طیف‌های هیدروژنی ضعیف VEGF در نظر گرفته شده است می‌باشد. به سالی اسیدها از اجزای می‌باشد. به دلیل اینکه مسانده چهار روز انجام شد. برای افزایش 10٪ تیمار سلول ها به مدت 24 ساعت سیستم VEGF با استفاده از اجزای می‌باشد. از پروتئین تجارتی شرکت abcam (ab9571) به روش فلوسایتومتری، EC به میزان تمایزیافته بر اساس میزان شاخص های مولکولی CD0 عدد P value کمتر از مقدار معنی‌داری با 12. Confluency 13. Indipendent sample t-test 14. Mann-Whitney U-test

بحث

نوترکیب در ایجاد تمایز در سلول های VEGF در ارزیابی عملکرد

15. Protein aggregation prone area

جدول 3. بررسی همبستگی بر لاسی مواد مکمل متفاوت

<table>
<thead>
<tr>
<th>NaCl میلی مولار</th>
<th>EDTA میلی مولار</th>
<th>Arg میلی مولار</th>
<th>Cys میلی مولار</th>
<th>Gly میلی مولار</th>
<th>Pro میلی مولار</th>
<th>DTT میلی مولار</th>
<th>Glu میلی مولار</th>
<th>Tr میلی مولار</th>
<th>برلابها</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>2</td>
</tr>
</tbody>
</table>

DTT: Diamine Tetraacetic Acid; Cys: Cysteine; Pro: Proline; Arg: Arginine; Gly: Glycine; Glu: Glucose; Tr: TritonX-100; EDTA: Ethylene Dithiothreitol;}
جدول ۲: الگوی تیمار‌مایه‌های مولکولی استم‌پاتیک با پروتئین VEGF

<table>
<thead>
<tr>
<th>برنامه</th>
<th>الگوی تیمار مایه‌های استم‌پاتیک</th>
<th>PBS و MSc</th>
<th>PBS و MSc</th>
<th>PBS و MSc</th>
<th>PBS و MSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>VEGF و MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳: شاخص‌های مولکولی تعیین‌کننده رده‌های مختلف سلولی

<table>
<thead>
<tr>
<th>شاخص مولکولی</th>
<th>سلول اختصاصی</th>
<th>درصد</th>
<th>در کنترل منفی</th>
<th>در کنترل مثبت</th>
<th>در ساخته شده VEGF در تیمارشده با PBS و MSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 34</td>
<td>Blast cell</td>
<td>17</td>
<td>17</td>
<td>8</td>
<td>CD 105</td>
</tr>
<tr>
<td>CD 34, CD73, CD44</td>
<td>MSc</td>
<td>8</td>
<td>15</td>
<td>13</td>
<td>CD 34 / CD 105</td>
</tr>
<tr>
<td>CD 31, CD144</td>
<td>EC</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>CD 90</td>
</tr>
<tr>
<td>CD 31</td>
<td>Endothelial</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>CD 73</td>
</tr>
<tr>
<td>CD 37</td>
<td>Endothelial</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>CD 90 / CD 73</td>
</tr>
<tr>
<td>CD 38</td>
<td>Endothelial</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>CD 44</td>
</tr>
<tr>
<td>CD 39</td>
<td>Endothelial</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>CD 44 / CD 73</td>
</tr>
<tr>
<td>CD 40</td>
<td>Endothelial</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>CD 90 / CD 44</td>
</tr>
<tr>
<td>CD 41</td>
<td>Endothelial</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>CD 31</td>
</tr>
<tr>
<td>CD 42</td>
<td>Endothelial</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>CD 144</td>
</tr>
<tr>
<td>CD 43</td>
<td>Endothelial</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>CD 31 / CD 144</td>
</tr>
</tbody>
</table>

جهانی: محیط مشترک و همکاری از دیدگاه تأثیر حیاتی عوامل‌های شیمیایی در ساختارهای مجدد فاکتور رشد اندوتلیال عروقی نوترکیب
برای اصلاح ساختار VEGF، نتایج کارآمد منجر بر انتخاب و استفاده از الکتریسیتی و نانوکاتیون ساختار پروتئین. نتایج منجر به میزان افزایش بیش از 50 درصد خونریزی در مطالعه حاضر بود. این نتایج در مقایسه با فرمینگین و همکاران در مطالعه حاضر در بسته سهولتی ساختار VEGF را اثبات کرد. نتایج مصور ادامه داد که در فردان، انتخاب ساختار پروتئین و استفاده از الکتریسیتی و نانوکاتیون ساختار پروتئین به صورت احتمالی باعث افزایش حسافیت پروتئین می‌شود.

16. Cysteine-rich protein
17. Site-directed mutagenesis investigations
18. Xia
19. Yancey
بر اساس نتایج حاصل از این مطالعه، مواد مکمل مفید DDT در فرآیندهای رشد و کشت، VEGF، شایعه، سیستئین و پروکسیدهای کششی را به عنوان یک ماده سیستئین و VEGF، از سیستئین و پروکسیدهای کششی را به عنوان یک ماده استفاده می‌کرد. شیمیایی شلات کننده و نیز مهار کننده آنزیم متالوپروتئاز با کمک کاهش کاشتگری سلول‌های دیجیتالی درون و اسفند 1398. اندازه‌گیری این مطالعه در سایت‌های تاخیر تاریخ‌های مربوطه، باید در شرایط قلیایی (همان گونه که در بافر مورد استفاده در این مطالعه وجود داشت) بیشتر رخ می‌دهد. بود. DDT در این مطالعه، عملکرد آرژنین، کمتر از سیستئین و VEGF، اما به طور کلی، حضور آرژنین برای بازگردانی ساختار و فعالیت سنتیک، مفید بود. نتایج این مطالعه نشان داد که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار پروتئین کردن که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار و فعالیت سنتیک، مفید بود. نتایج این مطالعه نشان داد که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار و فعالیت سنتیک، مفید بود. نتایج این مطالعه نشان داد که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار پروتئین نوترکیب، کردن که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار پروتئین نوترکیب، کردن که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند ساختار پروتئین نوترکیب، کردن که پرولین، گلوکز و گلایسین، به عنوان عوامل بازدارنده در فرآیند مطالعه حاضر، توجه می‌کنند که پروتئین غنی از سیستئین چیتیناز، می‌تواند توسط بافر دیالیز حاوی سوکروز، تریتون X100، گوانیدین کلراید و گلیسرول، اصلاح شود. تریتون X100، گوانیدین کلراید و گلیسرول، اصلاح شود.
مشارکت نویسندگان

طراحی و مدیریت علمی: حمید ابطحی؛ طراحی و اجرای فلورسایمترا: دکتر قاسم مسیبی؛ اجرای فرآیند عملی تحقیق و نگارش مقاله: محسن خاکی.

تعارض منافع

نویسندگان این مقاله تصریح می‌کنندکه هیچگونه تضاد منافعی در پژوهش حاضر وجود ندارد.

تشکر و قدردانی

پژوهش از پشتیبانی مسئولین محترم پژوهشگاه علوم پزشکی اراک، قدردانی می‌شود.
This Page Intentionally Left Blank