Volume 21, Issue 6 (12-2018)                   J Arak Uni Med Sci 2018, 21(6): 88-98 | Back to browse issues page

XML Persian Abstract Print


1- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran. , s_ghorbian@iau-ahar.ac.ir
2- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
Abstract:   (2243 Views)
Background and Aim: The CPEB gene encodes an important protein, which play critical roles in translational regulation of oogenesis and spermatogenesis procedures. The aim of this study was to evaluate the association between CPEB2 rs12643066 gene polymorphism with the risk of idiopathic azoospermia/severe oligozoospermia of men.
Materials and Methods: This study was designed as a case-control investigation on 100 blood samples of men with idiopathic azoospermia/severe oligozoospermia and 100 blood samples of fertile men. To evaluate CPEB2 gene polymorphism, PCR-RFLP method was used. Data analysis was performed by chi-squat test.
Findings: In the present study, the genotype frequencies did not show a statically significant difference between groups (p=0.479, OR=1.222; CI=0.701-2.129).
Conclusion: The study showed that the CPEB2 gene polymorphism was not associated with the risk of idiopathic azoospermia/severe oligozoospermia of men. However, it is conceivable that evaluation of this gene polymorphism can not be used as a biomarker in diagnosis of men with idiopathic azoospermia/severe oligozoospermia.
Full-Text [PDF 2373 kb]   (800 Downloads)    
Type of Study: Original Atricle | Subject: Basic Sciences
Received: 2018/03/25 | Accepted: 2018/07/3

References
1. Yu XW, Wei ZT, Jiang YT, Zhang SL. Y Chromosome Azoospermia Factor Region Microdeletions and Transmission Characteristics in Azoospermic and Severe Oligozoospermic Patients. International Journal of Clinical and Experimental Medicine. 2015; 8(9):14634.
2. Zhang YS, Li LL, Xue LT, Zhang H, Zhu YY, Liu RZ. Complete Azoospermia Factor b Deletion of Y Chromosome in an Infertile Male With Severe Oligoasthenozoospermia: Case Report and Literature Review. Urology. 2017; 102:111-5.
3. Moghbelinejad S, Mozdarania H, Ghoraeian P, Asadi R. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: A review. International Journal of Reproductive Biomedicine. 2018; 16(3):131.
4. Cong J, Li P, Zheng L, Tan J. Prevalence and risk factors of infertility at a rural site of northern China. PloS one. 2016; 11(5): e0155563.
5. Hong Y, Wang C, Fu Z, Liang H, Zhang S, Lu M, Sun W, Ye C, Zhang CY, Zen K, Shi L. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Scientific reports. 2016; 6:24229.
6. Ghorbian S. Routine diagnostic testing of Y chromosome deletions in male infertile and subfertile. Gene. 2012; 503(1):160-4.
7. Wosnitzer MS. Genetic evaluation of male infertility. Translational andrology and urology. 2014; 3(1):17.
8. Hayashi K, de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O'Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PloS one. 2008; 3(3): e1738.
9. Ghorbian S. Micro-RNAs, next-generation molecular markers in male infertility field. Translational andrology and urology. 2012; 1(4):245-6.
10. Poursadegh Zonouzi A, Poursadegh Zonouzi AA, Ghorbian S. PiRNAs interacting proteins, candidate molecular marker for evaluation of idiopathic male infertility. Andrologia. 2014; 46(8):823.
11. Tüttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M. Gene polymorphisms and male infertility–a meta-analysis and literature review. Reproductive biomedicine online. 2007; 15(6):643-58.
12. Zhang H, Liu Y, Su D, Yang Y, Bai G, Tao D, Ma Y, Zhang S. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertility and sterility. 2011; 96(1):34-9.
13. Kothandaraman N, Agarwal A, Abu-Elmagd M, Al-Qahtani MH. Pathogenic landscape of idiopathic male infertility: new insight towards its regulatory networks. NPJ genomic medicine. 2016; 1:16023.
14. Giangarrà V, Igea A, Castellazzi CL, Bava FA, Mendez R. Global analysis of CPEBs reveals sequential and non-redundant functions in mitotic cell cycle. PloS one. 2015; 10(9): e0138794.
15. Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, Sakurai T, Kimura M, Hecht NB, Uesugi S. CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biology of reproduction. 2003; 69(1):261-8.
16. Tšuiko O, Noukas M, Žilina O, Hensen K, Tapanainen JS, Mägi R, Kals M, Kivistik PA, Haller-Kikkatalo K, Salumets A, Kurg A. Copy number variation analysis detects novel candidate genes involved in follicular growth and oocyte maturation in a cohort of premature ovarian failure cases. Human Reproduction. 2016; 31(8):1913-25.
17. Zhang H, Liu Y, Su D, Yang Y, Bai G, Tao D, Ma Y, Zhang S. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertility and sterility. 2011; 96(1): 34-9.
18. YadollahyKhaless A, Kalhor N, Atri Roozbahani G. Association between CPEB1 gene polymorphism and Iranian male infertility. SSU Journals.2017; 25(8): 612-20.
19. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research. 1988; 16(3):1215.
20. Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. American journal of translational research. 2016; 8(4):1626.
21. Liu TE, Cheng W, Gao Y, Wang HU, Liu Z. Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Molecular medicine reports. 2012; 6(3):535-42.
22. Carrell DT. Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reproductive biomedicine online. 2008; 16(4):474-84.
23. Xie T, Yu CH, Zheng Y, Zhou-Cun A. The polymorphism G4C14-to-A4T14 in p73 gene may affect the susceptibility to male infertility with severe spermatogenesis impairment in Chinese population. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2016; 204:74-7.
24. Giangarrà V, Igea A, Castellazzi CL, Bava FA, Mendez R. Global analysis of CPEBs reveals sequential and non-redundant functions in mitotic cell cycle. PloS one. 2015; 10(9): e0138794.
25. Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mechanisms of development. 2001; 106(1-2):3-23.
26. Steger K. Haploid spermatids exhibit translationally repressed mRNAs. Anatomy and embryology. 2001; 203(5):323-34.
27. Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992; 69(6):1021-30.
28. Stepien BK, Oppitz C, Gerlach D, Dag U, Novatchkova M, Krüttner S, Stark A, Keleman K. RNA-binding profiles of Drosophila CPEB proteins Orb and Orb2. Proceedings of the National Academy of Sciences. 2016; 113(45): E7030-8.
29. Bolcun-Filas E, Speed R, Taggart M, Grey C, de Massy B, Benavente R, Cooke HJ. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS genetics. 2009; 5(2): e1000393.
30. Zheng P, Griswold MD, Hassold TJ, Hunt PA, Small CL, Ye P. Predicting meiotic pathways in human fetal oogenesis. Biology of reproduction. 2010; 82(3):543-51.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.