دوره 22، شماره 1 - ( دو ماهنامه فروردین و اردیبهشت 1398 )                   جلد 22 شماره 1 صفحات 61-51 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- گروه فیزیولوژی ورزشی، دانشکده روانشناسی و علوم تربیتی، دانشگاه شیراز، شیراز، ایران.
2- گروه فیزیولوژی ورزشی، دانشکده روانشناسی و علوم تربیتی، دانشگاه شیراز، شیراز، ایران. ، daryanoosh@shirazu.ac.ir
3- مرکز تحقیقات فن‌آوری سلول‌های بنیادی، بخش فارماکولوژی، دانشگاه علوم پزشکی شیراز، شیراز ایران.
چکیده:   (2570 مشاهده)
زمینه و هدف: هدف از پژوهش حاضر، بررسی تأثیر یک دوره بیتحرکی اندام تحتانی بر بیان ژنهای PGC-1α، NRF1، Mfn2، PINK1 و Drp1به عنوان تنظیمگرهای اصلی کیفیت و عملکرد میتوکندریایی در عضله نعلی رتهای تمرین کرده استقامتی بود.
مواد و روشها: به همین منظور 15 سر رت نر اسپراگ داولی به سه گروه (کنترل، ورزش+ بیتحرکی و گروه بیتحرکی) تقسیم شدند. رتهای گروه ورزش+ بیتحرکی طی 12 هفته و هر هفته 5 جلسه بر روی تردمیل دویدند. اندام تحتانی حیوانات برای 7 روز با روش قالبگیری بیتحرک شد. عضلهی نعلی استخراج و میزان بیان ژنهای موردنظر به روش RT-PCR اندازهگیری گردید. جهت تعیین تفاوتها از روش آنوای یکطرفه و آزمون تعقیبی توکی در سطح معنیداری 05/0α استفاده شد.
ملاحظات اخلاقی: این مطالعه با کد اخلاق IR.SUMS.REC.1396.S444 به تصویب کمیته اخلاق پژوهشی دانشگاه علوم پزشکی شیراز رسیده است.
یافتهها: نتایج نشان داد که بیتحرکی در هر دو گروه بیتحرکی و ورزش + بیتحرکی نسبت به گروه کنترل موجب کاهش بیان ژن­های PGC-1α (001/0p= و 045/0p=NRF1 (001/0p= و 006/0p=Mfn2 (001/0p= و 001/0p=) و افزایش PINK1 (001/0p= و 001/0p=) میشود، اما بیان ژن Drp1 تغییر معناداری نداشت (069/0p= و 223/0p=). هم‌چنین بررسیها مشخص کرد که در گروه ورزش + بیتحرکی، کاهش بیان PGC-1α (013/0p=NRF1 (001/0p=) و Mfn2 (001/0p=) کمتر از گروه بیتحرکی بود. هم‌چنین افزایش بیان PINK1 نیز کمتر از گروه بیتحرکی بود (001/0p=).
نتیجهگیری: این مطالعه نشان میدهد تمرین استقامتی اثر محافظتی بر کیفیت میتوکندریایی در دوره بیتحرکی دارد، اما نمیتواند از بروز نقص میتوکندریایی جلوگیری کند.
متن کامل [PDF 602 kb]   (2124 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: عمومى
دریافت: 1397/5/9 | پذیرش: 1397/6/19

فهرست منابع
1. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences. 2010; 107(19):8788-93.
2. Kuznetsov AV, Margreiter R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. International journal of molecular sciences. 2009; 10(4):1911-29.
3. Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxidants & redox signaling. 2011; 14(10):1939-51.
4. Rojo M, Legros F, Chateau D, Lombès A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of cell science. 2002; 115(8):1663-74.
5. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of cell biology. 2008; 183(5):795-803.
6. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA. The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. American Journal of Physiology-Cell Physiology. 2009; 297(1):C217-25.
7. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. Journal of cell science. 2001; 114(5):867-74.
8. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. Journal of cell science. 2004; 117(26):6535-46.
9. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences. 2006; 103(44):16260-5.
10. Adhihetty PJ, O'Leary MF, Chabi B, Wicks KL, Hood DA. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. Journal of applied physiology. 2007; 102(3):1143-51.
11. Iqbal S, Ostojic O, Singh K, Joseph AM, Hood DA. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle & nerve. 2013; 48(6):963-70.
12. Wagatsuma A, Kotake N, Mabuchi K, Yamada S. Expression of nuclear-encoded genes involved in mitochondrial biogenesis and dynamics in experimentally denervated muscle. Journal of physiology and biochemistry. 2011; 7(3):359-70.
13. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, et al. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. American Journal of Physiology-Endocrinology and Metabolism. 2010; 298(4):E799-806.
14. Frimel TN, Kapadia F, Gaidosh GS, Li Y, Walter GA, Vandenborne K. A model of muscle atrophy using cast immobilization in mice. Muscle & nerve. 2005; 32(5):672-4.
15. Kang C, Chung E, Diffee G, Ji LL. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Experimental gerontology. 2013; 48(11):1343-50.
16. Wicks KL, Hood DA. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. American Journal of Physiology-Cell Physiology. 1991; 260(4):C841-50.
17. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in plant science. 2002; 7(9):405-10.
18. Youn JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. Journal of molecular and cellular cardiology. 2013; 62:72-9.
19. Ono T, Isobe K, Nakada K, Hayashi JI. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nature genetics. 2001; 28(3):272-5.
20. Bach, D., Pich, S., Soriano, F. X., Vega, N., Baumgartner, B., Oriola, J., ... et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism A novel regulatory mechanism altered in obesity. Journal of Biological Chemistry. 2003; 278(19): 17190-17197.
21. Sacheck, J. M., Hyatt, J. P. K., Raffaello, A., Jagoe, R. T., Roy, R. R., Edgerton, V. R., ... et al .Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. The FASEB Journal. 2007; 21 (1), 140-155.
22. Bartlett SR, Sawdy R, Mann GE. Induction of cyclooxygenase‐2 expression in human myometrial smooth muscle cells by interleukin‐1β: involvement of p38 mitogen‐activated protein kinase. The Journal of physiology. 1999; 520(2):399-406.
23. Kang C, Goodman CA, Hornberger TA, Ji LL. PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. The FASEB Journal. 2015; 29(10):4092-106.
24. Faist V, König J, Höger H, Elmadfa I. Decreased mitochondrial oxygen consumption and antioxidant enzyme activities in skeletal muscle of dystrophic mice after low-intensity exercise. Annals of nutrition and metabolism. 2001; 45(2):58-66.
25. Langfort J, Viese M, Ploug T, Dela F. Time course of GLUT4 and AMPK protein expression in human skeletal muscle during one month of physical training. Scandinavian journal of medicine & science in sports. 2003; 13(3):169-74.
26. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. American Journal of Physiology-Endocrinology And Metabolism. 1996; 270(2):E265-72.
27. Hadidi V, Kordi M, Gaeini A, Nekoie A, Shafie A, Hajati Modaraie M. Effect of eight weeks high intensity interval training on gene expression of PGC-1α, in male healthy rats fast-slow twitch muscles. Harkat journal. 2015; 7(4): 661-673. (In Persian).
28. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. Mitochondrial signaling contributes to disuse muscle atrophy. American Journal of Physiology-Endocrinology and Metabolism. 2012 .

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.