دوره 22، شماره 3 - ( دو ماهنامه مرداد و شهریور 1398 )                   جلد 22 شماره 3 صفحات 68-59 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- گروه فیزیولوژی ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران.
2- گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، دانشگاه لرستان، خرم آباد، ایران. ، fathi.m@lu.ac.ir
چکیده:   (2273 مشاهده)
زمینه و هدف: فعالیت استقامتی موجب تجدید ساختار قلب می‌شود، یکی از عواملی که بیان بسیاری از ژن‌های قلب را تنظیم می‌کند، miR-133 است. هدف این پژوهش بررسی تاثیر تمرین استقامتی بر بیان miR-133 قلب در موشهای صحرایی نژاد ویستار بود.
مواد و روش‌ها: در این پژوهش تجربی، 14 سر موش صحرایی نر نژاد ویستار به مدت 4 هفته در شرایط کنترل شده، نگهداری شدند. بعد از آشناسازی ‌به‌طور تصادفی به دو گروه شاهد (7 سر) و تجربی (7 سر) تقسیم شدند. گروه تجربی یک برنامه تمرینی 14 هفته‌ای، هفته‌ای 6 جلسه (که بهتدریج به 60 دقیقه و 30 متر بر دقیقه رسید) را روی نوار گردان اجرا نمودند. 48 ساعت پس از پایان آخرین جلسه، بی‌هوش و تشریح شدند. سپس قلب آن‌ها خارج شده و بعد از هموژن بافت بطن چپ و استخراج RNA و سنتز cDNA با استفاده از روش Real-Time PCR، میزان بیان miR-133 بطن چپ ‌اندازه‌گیری شد. با استفاده از آزمون آماری تی، میزان بیان miR-133 در سطح 05/0 ارزیابی شد.
ملاحظات اخلاقی: این پژوهش تجربی با کد اخلاق 52/1396345 در معاونت پژوهشی دانشگاه لرستان تایید شد.
یافته‌ها: پس از 14 هفته تمرین استقامتی، میزان بیان miR-133 قلب در گروه تمرینی ‌به‌طور معنی‌داری (007/0=p) نسبت به گروه شاهد افزایش یافت که با افزایش معنی‌دار نسبت توده حجم بطن چپ به وزن بدن همراه بود (012/0=p).
نتیجه‌گیری: با توجه به تغییرات ساختاری قلب، می‌توان گفت که احتمالاً بخشی از سازگاری قلب به تمرین استقامتی ناشی از افزایش بیان  miR-133باشد.
واژه‌های کلیدی: بطن چپ، تمرین استقامتی، miR-133
متن کامل [PDF 597 kb]   (919 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: عمومى
دریافت: 1397/11/20 | پذیرش: 1398/2/25

فهرست منابع
1. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003; 65:45-79.
2. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13(5):613-8.
3. Latronico MV, Elia L, Condorelli G, Catalucci D. Heart failure: targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. Int J Biochem Cell Biol. 2008; 40(9):1643-8.
4. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358(13):1370-80.
5. Silva D, Carneiro FD, Almeida KC, Fernandes-Santos C. Role of miRNAs on the Pathophysiology of Cardiovascular Diseases. Arquivos brasileiros de cardiologia. 2018; 111(5):738-46.
6. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta pharmacologica Sinica. 2018; 39(7):1073-84.
7. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World journal of biological chemistry. 2017; 8(1):45-56.
8. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology. 2018; 9:402.
9. Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. Journal of cachexia, sarcopenia and muscle. 2018; 9(1):20-7.
10. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology. 2007; 102(1):306-13.
11. Li N, Zhou H, Tang Q. miR-133: A Suppressor of Cardiac Remodeling? Frontiers in pharmacology. 2018; 9:903.
12. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129(2):303-17.
13. Chen JF, Mandel EM, Thomson JM, Wu QL, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics. 2006; 38(2):228-33.
14. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of cell science. 2007; 120(Pt 17):3045-52.
15. Ekhteraei Tousi S, Mohammad Soltani B, Sadeghizadeh M, Hoseini S, Soleimani M. Hsa-miR-133b Expression Profile during Cardiac Progenitor Cell Differentiation and its Inhibitory Effect on SRF Expression. Pathobiology Research. 2013; 16(1):1-9.
16. Thum T, Bauersachs J. MicroRNAs in cardiac hypertrophy and failure. Drug Discovery Today: Disease Mechanisms. 2009; 5(3-4):e279-e83.
17. Chen JF, Callis TE, Wang DZ. microRNAs and muscle disorders. Journal of Cell Science. 2008; 122(1):13-20.
18. Berry MJ, Sheilds KL, Adair NE. Comparison of Effects of Endurance and Strength Training Programs in Patients with COPD. Copd. 2018; 15(2):192-9.
19. Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Frontiers in cardiovascular medicine. 2018; 5:135.
20. Xu X, Wan W, Powers AS, Li J, Ji LL, Lao S, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J Mol Cell Cardiol. 2008; 44(1):114-22.
21. FARRIOL M, ROSSELL J, SCHWAR S. Body surface area in Sprague-Dawley rats. Journal of Animal Physiology and Animal Nutrition. 1997; 77 (0931-2439):61-5.
22. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9):e45.
23. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. Journal of sport and health science. 2018; 7(4):433-41.
24. Zhang S, Chen N. Regulatory Role of MicroRNAs in Muscle Atrophy during Exercise Intervention. International journal of molecular sciences. 2018; 19(2).
25. Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011; 43(11):665-73.
26. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of Applied Physiology. 2011; 110(2):309-17.
27. Czubryt MP, Olson EN. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res. 2004; 59:105-24.
28. Nelson TJ, Balza R, Jr., Xiao Q, Misra RP. SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J Mol Cell Cardiol. 2005; 39(3):479-89.
29. Trachsel LD, Ryffel CP, De Marchi S, Seiler C, Brugger N, Eser P, et al. Exercise-induced cardiac remodeling in non-elite endurance athletes: Comparison of 2-tiered and 4-tiered classification of left ventricular hypertrophy. PLoS One. 2018; 13(2):e0193203.
30. Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Frontiers in cardiovascular medicine. 2018; 5:127.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.