Volume 23, Issue 5 (December & January - Special Issue on COVID-19 2020)                   J Arak Uni Med Sci 2020, 23(5): 666-685 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Agharezaee N, Forouzesh F. SARS-COV-2: History, Genetics, and Treatment. J Arak Uni Med Sci 2020; 23 (5) :666-685
URL: http://jams.arakmu.ac.ir/article-1-6343-en.html
1- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
2- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. , f8forouzesh@gmail.com
Full-Text [PDF 8400 kb]   (4005 Downloads)     |   Abstract (HTML)  (11250 Views)
Full-Text:   (12485 Views)
1. Introduction
he rapid spread of SARS-CoV-2, a new coronavirus that emerged in Wuhan, China in late 2019, has led the World Health Organization to report this disease as an international concern [4]. Clinical symptoms at the beginning of the outbreak included fever, cough, and fatigue, and a small number of patients had symptoms of gastrointestinal infection. After about three months, the symptoms of the disease changed and gastrointestinal symptoms and skin rash were also observed [4]. To date, no vaccine against COVID-19 is available and there are no specific cures for the virus. Therefore, there is a large scientific gap in the emerging SARS-CoV-2, which leads to the spread of incorrect information [8]. The purpose of this review study is to present the latest research advances in genetics, pathogenicity and clinical features of COVID-19 as well as current therapies and scientific advances in the fight against this pandemic.
2. Materials and Methods
This is a systematic overview study. The keywords “Coronavirus disease 2019 (COVID-19)”, “Genetics”, “Therapy”, “Control” and “Public health” were used for the search in PubMed, Web of Science, Google Scholar, and Scopus databases for studies published from 2010 to 2020. The initial search yielded 55 articles. Based on the purpose of the study, the abstract and full texts of studies were checked and finally 30 articles were selected for the review.
3. Results
SARS-CoV-2 is a monopartite, single-stranded, positive-sense RNA virus with a genome size of 29903 nucleotides. The virus genome consists of two untranslated regions (UTRs) at the 3’ and 5’ end and 11 open reading frameworks (ORFs) that encode 27 proteins [8, 32] (Table 1). 

The first ORF CORF1/ab) constitutes about 2/3 of the virus genome, encoding 16 non-structural proteins (NSPS), while the remaining third of the genome encodes 4 structural proteins and at least 6 accessory proteins. The structural proteins are spike glycoprotein (S), matrix protein (M), envelope protein (E), and nucleocapsid protein (N) (Figure 1), while the accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10, as shown in Table 2 [8]. 

The SARS-CoV-2 virus is transmitted through direct contact, aerosol, fecal-oral route, and infected objects and materials, by symptomatic and asymptomatic patients during the incubation period [7, 40]. It is characterized by fever (88.7%), dry cough (67.8%), fatigue (38.1%), sputum production (33.4%), shortness of breath (18.6%), sore throat (13.9%) and headache (13.6%) in 20-25% of patients who do not show upper respiratory symptoms such as sneezing or sore throat. In addition, a group of patients showed gastrointestinal symptoms with diarrhea (3.8%) and vomiting (5.0%) [44]. In severe cases, the disease is characterized by pneumonia, metabolic acidosis, septic shock, and bleeding [40].
4. Discussion and Conclusion
In December 2019, a group pneumonia cases caused by a new beta-coronavirus was identified, which led to the rapid spread of COVID-19 worldwide [78]. Although advances have been made in the prevention and detection of COVID-19, effective approaches to its treatment and epidemiological control are not yet available. While tests for SARS-CoV-2 genome-specific vaccines and therapeutic antibodies are currently being tested, but this process is long and requires complete safety testing. Reusing existing therapies previously designed for other infections and viral pathology is the only practical approach to this emerging disease, because most of these drugs have already been tested in terms of immune responses. The current pandemic is thought to be a stimulus for changing the approach to reuse current drugs, but for different therapeutic purposes. In this way, with any future outbreak of the virus, potential drugs will be reused.
SARS-CoV-2 has undoubtedly attracted worldwide attention by posing an important challenge to the public health system and existing antiviral solutions. COVID-19 belongs to the beta-coronavirus type based on studies of its evolutionary degree and genomic structure. Human beta-coronaviruses (SARS-CoV-2, SARS-CoV and MERS-CoV) have many similarities, but there are differences in their genomic and phenotypic structure that can affect their pathogenesis. Without full knowledge of the drug target, it is challenging to develop promising and cost-effective drugs for the effective treatment of human diseases.

Ethical Considerations
Compliance with ethical guidelines

Ethical principles have been observed according to the instructions of the National Ethics Committee and the COPE regulations.

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors. 

Authors' contributions
All authors contributed equally in preparing this article.

Conflicts of interest
The authors declare no conflict of interest.

  1. Decaro N, Mari V, Elia G, Addie DD, Camero M, Lucente MS, et al. Recombinant canine coronaviruses in dogs, Europe. Emerg Infect Dis. 2010; 16(1):41-7. [DOI:10.3201/eid1601.090726]
  2. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005; 69(4):635-64. [DOI:10.1128/MMBR.69.4.635-664.2005]
  3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18):1708-20. [DOI:10.1056/NEJMoa2002032]
  4. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020; 7(1):11. [DOI:10.1186/s40779-020-00240-0]
  5. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020; 27(3):325-8. [DOI:10.1016/j.chom.2020.02.001]
  6. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Res. 2015; 206:120-33. [DOI:10.1016/j.virusres.2015.02.025]
  7. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3. [DOI:10.1038/s41586-020-2012-7] [PMCID]
  8. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic:A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med. 2020; 9(4):1225. [DOI:10.3390/jcm9041225]
  9. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020; 16(10):1686-97. [DOI:10.7150/ijbs.45472]
  10. van der Hoek L, Sure K, Ihorst G, Stang A, Pyrc K, Jebbink MF, et al. Croup is associated with the novel coronavirus NL63. PLoS Med. 2005; 2(8):e240. [DOI:10.1371/journal.pmed.0020240]
  11. Abdul-Rasool S, Fielding BC. Understanding human coronavirus HCoV-NL63. Open Virol J. 2010; 4:76-84. [DOI:10.2174/1874357901004010076]
  12. Lau SKP, Woo PCY, Yip CCY, Tse H, Tsoi HW, Cheng VCC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006; 44(6):2063-71. [DOI:10.1128/JCM.02614-05] [PMCID]
  13. Woo PCY, Lau SKP, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005; 79(2):884-95. [DOI:10.1128/JVI.79.2.884-895.2005]
  14. Coleman CM, Frieman MB. Emergence of the Middle East respiratory syndrome coronavirus. PLoS Pathog. 2013; 9(9):e1003595. [DOI:10.1371/journal.ppat.1003595]
  15. Gao H, Yao H, Yang S, Li L. From SARS to MERS:Evidence and speculation. Front Med. 2016; 10(4):377-82. [DOI:10.1007/s11684-016-0466-7]
  16. Hilgenfeld R, Peiris M. From SARS to MERS:10 years of research on highly pathogenic human coronaviruses. Antiviral Res. 2013; 100(1):286-95. [DOI:10.1016/j.antiviral.2013.08.015] [PMCID]
  17. Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007; 20(4):660-94. [DOI:10.1128/CMR.00023-07]
  18. To KKW, Hung IFN, Chan JFW, Yuen KY. From SARS coronavirus to novel animal and human coronaviruses. J Thorac Dis. 2013; 5 Suppl 2(Suppl 2):S103-8. [DOI:10.3978/j.issn.2072-1439.2013.06.02]
  19. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
  20. Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017; 25(1):35-48. [DOI:10.1016/j.tim.2016.09.001]
  21. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3):181-92. [DOI:10.1038/s41579-018-0118-9] [PMCID]
  22. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017; 13(11):e1006698. [DOI:10.1371/journal.ppat.1006698]
  23. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367(19):1814-20. [DOI:10.1056/NEJMoa1211721]
  24. Jodar M, Kalko S, Castillo J, Ballesca JL, Oliva R. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod. 2012; 27(5):1431-8. [DOI:10.1093/humrep/des021]
  25. Johnson GD, Sendler E, Lalancette C, Hauser R, Diamond MP, Krawetz SA. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol Hum Reprod. 2011; 17(12):721-6. [DOI:10.1093/molehr/gar054]
  26. Chu DKW, Hui KPY, Perera RAPM, Miguel E, Niemeyer D, Zhao J, et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci U S A. 2018; 115(12):3144-9. [DOI:10.1073/pnas.1718769115]
  27. Lau SKP, Li KSM, Tsang AKL, Lam CSF, Ahmed S, Chen H, et al. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol. 2013; 87(15):8638-50. [DOI:10.1128/JVI.01055-13] [PMCID]
  28. Wang Y, Liu D, Shi W, Lu R, Wang W, Zhao Y, et al. Origin and possible genetic recombination of the Middle East Respiratory syndrome coronavirus from the first imported case in China:Phylogenetics and Coalescence Analysis. mBio. 2015; 6(5):e01280-15. [DOI:10.1128/mBio.01280-15]
  29. Dudas G, Rambaut A. MERS-CoV recombination:Implications about the reservoir and potential for adaptation. Virus Evol. 2016; 2(1):vev023. [DOI:10.1093/ve/vev023]
  30. Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495(7440):251-4. [DOI:10.1038/nature12005]
  31. Luo CM, Wang N, Yang XL, Liu HZ, Zhang W, Li B, et al. Discovery of novel bat coronaviruses in south China that use the same receptor as middle east respiratory syndrome coronavirus. J Virol. 2018; 92(13):e00116-18. [DOI:10.1128/JVI.00116-18]
  32. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19):Current status and future perspectives. Int J Antimicrob Agents. 2020; 55(5):105951. [DOI:10.1016/j.ijantimicag.2020.105951]
  33. Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020; 92(5):522-8. [DOI:10.1002/jmv.25700]
  34. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395(10223):507-13. [DOI:10.1016/S0140-6736(20)30211-7]
  35. Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1):221-36. [DOI:10.1080/22221751.2020.1719902]
  36. Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem J. 2020; 477(5):1009-19. [DOI:10.1042/BCJ20200029]
  37. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019:The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020; 92(6):584-588. [DOI:10.1002/jmv.25719]
  38. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265-9. [DOI:10.1038/s41586-020-2008-3]
  39. GISAID. Official hCoV-19 Reference Sequence [Internet]. 2020 [Updated 2020]. Available from: https://www.gisaid.org/epiflu-applications/hcov-19-reference-sequence/
  40. Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo R, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 2020; 22(2):80-5. [DOI:10.1016/j.micinf.2020.02.002]
  41. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020; 133(9):1025-31. [DOI:10.1097/CM9.0000000000000744]
  42. Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, et al. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: Biology and therapeutic options. J Clin Microbiol. 2020; 58(5):e00187-20. [DOI:10.1128/JCM.00187-20]
  43. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014; (12):CD007411. [DOI:10.1002/14651858.CD007411.pub3]
  44. WHO. Coronavirus Disease (COVID-19) Technical guidance:Laboratory testing for 2019-nCoV in humans [Internet]. 2020 [Updated 2020]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance/
  45. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients:Implication of multiple shedding routes. Emerg Microbes Infect. 2020; 9(1):386-9. [DOI:10.1080/22221751.2020.1729071]
  46. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 2020; 323(22):2249-51. [DOI:10.1001/jama.2020.8259]
  47. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected [Internet]. 2020 [Updated 2020 January 12]. Available from: https://www.who.int/publications/i/item/10665-332299
  48. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104(3):246-51. [DOI:10.1016/j.jhin.2020.01.022]
  49. Li H, Wang YM, Xu JY, Cao B. [Potential antiviral therapeutics for 2019 Novel Coronavirus]. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43(3):170-2. [DOI:10.3760/cma.j.issn.1001-0939.2020.03.004]
  50. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS:Initial virological and clinical findings. Thorax. 2004; 59(3):252-6. [DOI:10.1136/thorax.2003.012658]
  51. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea:The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020; 35(6):e79. [DOI:10.3346/jkms.2020.35.e79]
  52. Han W, Quan B, Guo Y, Zhang J, Lu Y, Feng G, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J Med Virol. 2020; 92(5):461-3. [DOI:10.1002/jmv.25711]
  53. Wang Y, Ding Y, Yang C, Li R, Du Q, Hao Y, et al. Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret). Biomed Pharmacother. 2017; 91:393-401. [DOI:10.1016/j.biopha.2017.04.091]
  54. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19):The perspectives of clinical immunologists from China. Clin Immunol. 2020; 214:108393. [DOI:10.1016/j.clim.2020.108393]
  55. Huang X, Xu Y, Yang Q, Chen J, Zhang T, Li Z, et al. Efficacy and biological safety of lopinavir/ritonavir based anti-retroviral therapy in HIV-1-infected patients:A meta-analysis of randomized controlled trials. Sci Rep. 2015; 5:8528. [DOI:10.1038/srep08528]
  56. Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, Al Qasim E, et al. Ribavirin and interferon therapy for critically Ill patients with Middle East respiratory syndrome:A multicenter observational study. Clin Infect Dis. 2020; 70(9):1837-44. [DOI:10.1093/cid/ciz544]
  57. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus:An observational study. Int J Infect Dis. 2014; 20:42-6. [DOI:10.1016/j.ijid.2013.12.003]
  58. Janowski AB, Dudley H, Wang D. Antiviral activity of ribavirin and favipiravir against human astroviruses. J Clin Virol. 2020; 123:104247. [DOI:10.1016/j.jcv.2019.104247]
  59. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(7):449-63. [DOI:10.2183/pjab.93.027]
  60. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013; 100(2):446-54. [DOI:10.1016/j.antiviral.2013.09.015]
  61. Gao J, Li J, Shao X, Jin Y, Lu XW, Ge JF, et al. Antiinflammatory and immunoregulatory effects of total glucosides of Yupingfeng powder. Chin Med J (Engl). 2009; 122(14):1636-41. [PMID]
  62. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11(1):222. [DOI:10.1038/s41467-019-13940-6]
  63. Lathouwers E, Wong EY, Luo D, Seyedkazemi S, De Meyer S, Brown K. HIV-1 resistance rarely observed in patients using darunavir once-daily regimens across clinical studies. HIV Clin Trials. 2017; 18(5-6):196-204. [DOI:10.1080/15284336.2017.1387690]
  64. Mifsud EJ, Tilmanis D, Oh DY, Ming-Kay Tai C, Rossignol JF, Hurt AC. Prophylaxis of ferrets with nitazoxanide and oseltamivir combinations is more effective at reducing the impact of influenza a virus infection compared to oseltamivir monotherapy. Antiviral Res. 2020; 176:104751. [DOI:10.1016/j.antiviral.2020.104751]
  65. Lee N, Allen Chan KC, Hui DS, Ng EKO, Wu A, Chiu RWK, et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31(4):304-9. [DOI:10.1016/j.jcv.2004.07.006]
  66. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020; 21(7):2272. [DOI:10.3390/ijms21072272]
  67. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with covid-19 with convalescent plasma. JAMA. 2020; 323(16):1582-9. [DOI:10.1001/jama.2020.4783]
  68. Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically Ill COVID-19 patients: The case for compassionate use. Pain physician. 2020; 23(2):E71-83. [PMID]
  69. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. 2020; 178:104787. [DOI:10.1016/j.antiviral.2020.104787]
  70. Cava C, Bertoli G, Castiglioni I. In silico discovery of candidate drugs against Covid-19. Viruses. 2020; 12(4):404. [DOI:10.3390/v12040404]
  71. Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19:A multinational registry analysis. Lancet. 2020. [DOI:10.1016/S0140-6736(20)31180-6]
  72. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014; 58(8):4885-93. [DOI:10.1128/AAC.03036-14] [PMCID]
  73. Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen K-Y. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016; 15(5):327-47. [DOI:10.1038/nrd.2015.37]
  74. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014; 111(42):15214-9. [DOI:10.1073/pnas.1407087111]
  75. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013; 87(23):12552-61. [DOI:10.1128/JVI.01890-13]
  76. Lehrer S. Inhaled biguanides and mTOR inhibition for influenza and coronavirus (Review). World Acad Sci J. 2020; 2(3):1. [DOI:10.3892/wasj.2020.42]
  77. Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline:An overview. Curr Trop Med Rep. 2020:1-4. [DOI:10.1007/s40475-020-00201-6]
  78. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:Implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74. [DOI:10.1016/S0140-6736(20)30251-8] [PMCID]
  79. Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020; 21(7):2657. [DOI:10.3390/ijms21072657]
Type of Study: Review Article | Subject: COVID-19
Received: 2020/05/30 | Accepted: 2020/07/28

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb