Volume 24, Issue 2 (June & July 2021)                   J Arak Uni Med Sci 2021, 24(2): 168-179 | Back to browse issues page

XML Persian Abstract Print

1- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
2- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran. , m.peymani@iaushk.ac.ir
Abstract:   (2395 Views)
Background and Aim: The protein encoded by the SGO1 gene is a member of the shugoshin family of proteins and protects the centromere during mitosis. lncRNAs are non-coding RNA with 200 nucleotides lengths, i.e., involved in regulating gene expression. The current study aimed to evaluate the expression of SGO1 and SGO1-AS1 in different stages of disease progression; we also compared their expression pattern in tumor tissues with healthy tissues in colorectal cancer patients.
Methods & Materials: In total, 40 tissue samples of patients with colorectal cancer were reported according to the examination and criteria with the approval of a pathologist. Besides, 40 normal tissues were sampled from a completely healthy part of the intestine of the same patients. After RNA extraction and cDNA synthesis, the Real-time RT-PCR technique was used to evaluate the expression of the desired genes in the study groups. ROC curve analysis was also used to determine the ability of each selected gene to diagnose the disease. 
Ethical Considerations: This study was approved by the Ethics Committee of Shahrekord Azad University (Code: IR.IAU.SHKREC.1398.020).
Results The obtained data suggested that SGO1 significantly decreased in the colorectal cancer tumor samples (P<0.001) and SGO1-AS1 LncRNA significantly increased expression, compared to adjacent healthy tissues. Additionally, in the age group of below 60 years, compared to the age group of over 60 years, SGO1 expression increased and SGO1-AS1 expression decreased. Based on the AUC obtained from the ROC diagram, it was found that the SGO1 gene with AUC=0.8041 and SGO1-AS1 with AUC=0.6364 could significantly distinguish a healthy population from patients with colorectal cancer.
Conclusion: According to the collected results, SGO1 -AS1 and SGO1 were significantly reduced and increased in tumor tissue, respectively; however, only the SGO1 gene was introduced as a good marker for diagnosing colorectal cancer.
Full-Text [PDF 3957 kb]   (792 Downloads) |   |   Full-Text (HTML)  (746 Views)  
Type of Study: Original Atricle | Subject: Basic Sciences
Received: 2020/07/15 | Accepted: 2020/08/25

1. Geboes K, Ectors N, Geboes KP. Pathology of early lower GI cancer. BEST PRACT RES CL GA. 2005;19(6):963-78. doi.org/10.1016/j.bpg.2005.04.005. [DOI:10.1016/j.bpg.2005.04.005]
2. Ansari R, Mahdavinia M, Sadjadi A, Nouraie M, Kamangar F, Bishehsari F, et al. Incidence and age distribution of colorectal cancer in Iran: results of a population-based cancer registry. Cancer lett. 2006;240(1):143-7. doi.org/10.1016/j.canlet.2005.09.004. [DOI:10.1016/j.canlet.2005.09.004]
3. Burt RW, Barthel JS, Dunn KB, David DS, Drelichman E, Ford JM, et al. Colorectal cancer screening. J NATL COMPR CANC NE. 2010;8(1):8-61. doi.org/10.6004/jnccn.2010.0003. [DOI:10.6004/jnccn.2010.0003]
4. Kumar V, Abbas AK, Aster JC. Robbins basic pathology e-book: Elsevier Health Sciences; 2017.
5. Pahlavan PS, Kanthan R. The epidemiology and clinical findings of colorectal cancer in Iran. J Gastrointest Liver. 2006;15(1):15.
6. Mahapatra K, Roy S. An insight into the folding and stability of Arabidopsis thaliana SOG1 transcription factor under salinity stress in vitro. Biochem Biophys Res Commun. 2019;515(4):531-7. doi.org/10.1016/j.bbrc.2019.05.183. [DOI:10.1016/j.bbrc.2019.05.183]
7. Piché J, Gosset N, Legault L-M, Pacis A, Oneglia A, Caron M, et al. Molecular signature of CAID syndrome: noncanonical roles of SGO1 in regulation of TGF-β signaling and epigenomics. CMGH Cell Mol Gastroenterol. 2019;7(2):411-31. doi.org/10.1016/j.jcmgh.2018.10.011. [DOI:10.1016/j.jcmgh.2018.10.011]
8. Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-ACse4 interacts with the N-terminus of SGO1 and regulates its association with centromeric chromatin. Cell Cycle. 2018;17(1):11-23. doi.org/10.1080/15384101.2017.1380129. [DOI:10.1080/15384101.2017.1380129]
9. Rao CV, Sanghera S, Zhang Y, Biddick L, Reddy A, Lightfoot S, et al. Systemic chromosome instability resulted in colonic transcriptomic changes in metabolic, proliferation, and stem cell regulators in SGO1−/+ Mice. Cancer res. 2016;76(3):630-42. doi: 10.1158/0008-5472.CAN-15-0940 Published February 2016. [DOI:10.1158/0008-5472.CAN-15-0940]
10. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26-46. doi.org/10.1016/j.cell.2013.06.020. [DOI:10.1016/j.cell.2013.06.020]
11. Kugel JF, Goodrich JA. Non-coding RNAs: key regulators of mammalian transcription. Trends biochem sci. 2012;37(4):144-51. doi.org/10.1016/j.tibs.2011.12.003. [DOI:10.1016/j.tibs.2011.12.003]
12. Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle. 2012;11(14):2631-42. doi.org/10.4161/cc.20633. [DOI:10.4161/cc.20633]
13. Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, Valadkhan S, et al. The lncRNA BORG drives breast cancer metastasis and disease recurrence. Sci rep. 2017;7(1):1-18. doi.org/10.1038/s41598-017-12716-6. [DOI:10.1038/s41598-017-12716-6]
14. Nasim N, Ghafouri-Fard S, Soleimani S, Esfandi F, Shirkhoda M, Safaei M, et al. Assessment of SGO1 and SGO1-AS1 contribution in breast cancer. Hum antibodies. 2019;(Preprint):1-6. doi: 10.3233/HAB-190384. [DOI:10.3233/HAB-190384]
15. Yang Y, Wang X, Dai W. Human SGO1 is an excellent target for induction of apoptosis of transformed cells. Cell Cycle. 2006;5(8):896-901. doi.org/10.4161/cc.5.8.2691. [DOI:10.4161/cc.5.8.2691]
16. Thornton B, Basu C. Rapid and simple method of qPCR primer design. PCR Primer Design: Springer; 2015. p. 173-9. doi.org/10.1007/978-1-4939-2365-6_13. [DOI:10.1007/978-1-4939-2365-6_13]
17. Rychlik W. OLIGO 7 primer analysis software. PCR primer design: Springer; 2007. p. 35-59. doi.org/10.1007/978-1-59745-528-2_2. [DOI:10.1007/978-1-59745-528-2_2]
18. Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitation of microRNAs by real-time RT-qPCR. PCR protocols: Springer; 2011. p. 113-34. doi.org/10.1007/978-1-60761-944-4_8. [DOI:10.1007/978-1-60761-944-4_8]
19. Wang L-H, Yen C-J, Li T-N, Elowe S, Wang W-C, Wang LH-C. SGO1 is a potential therapeutic target for hepatocellular carcinoma. Oncotarget. 2015;6(4):2023. doi: 10.18632/oncotarget.2764. [DOI:10.18632/oncotarget.2764]
20. Ong MS, Cai W, Tan TZ, Huang RY-J, Hooi SC, Yap CT, et al. Long non-coding RNA landscape in colorectal cancer. RNA & disease. 2019;6. doi: 10.14800/rd.1628. [DOI:10.14800/rd.1628]
21. Mu J, Fan L, Liu D, Zhu D. Overexpression of shugoshin1 predicts a poor prognosis for prostate cancer and promotes metastasis by affecting epithelial-mesenchymal transition. OncoTargets ther. 2019;121111. doi: 10.2147/OTT.S191157. [DOI:10.2147/OTT.S191157]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.