دوره 21، شماره 4 - ( دوماهنامه مرداد و شهریور 1397 )                   جلد 21 شماره 4 صفحات 29-18 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salehi E, Hagizadeh E, Alidoosti M. Evaluation Risk Factors of Coronary Artery Disease Through Competing Risk Tree . J Arak Uni Med Sci 2018; 21 (4) :18-29
URL: http://jams.arakmu.ac.ir/article-1-5424-fa.html
صالحی احسان، حاجی زاده ابراهیم، علیدوستی محمد. بررسی عوامل خطرزای بیماری عروق کرونر با استفاده از درخت مخاطره‌های رقیب. مجله دانشگاه علوم پزشكي اراك. 1397; 21 (4) :18-29

URL: http://jams.arakmu.ac.ir/article-1-5424-fa.html


1- گروه آمار زیستی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران.
2- گروه آمار زیستی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران. ، hajizadeh@modares.ac.ir
3- مرکز قلب تهران، دانشگاه علوم پزشکی تهران، تهران، ایران.
چکیده:   (3117 مشاهده)
زمینه و هدف: پیشرفت علوم پزشکی طی چند دهه گذشته، تشخیص ریسک فاکتورهایی که ممکن است سبب تسریع بیماری عروق­کرونر شود را ممکن ساخته است. ولی این دانش هنوز نتوانسته منجر به کاهش معنادار در بروز بیماری عروق کرونر قلب شود. هدف این پژوهش، ارزیابی ریسک فاکتورهای بیماری عروق­کرونر قلب پس از استنت­گذاری به کمک روش درخت مخاطره­های رقیب با پیشامدهای مرکب می­باشد. با کنترل این عوامل پیش آگهی می­توانیم احتمال بروز این بیماری کاهش دهیم.
مواد و روش­ ها: این مطالعه مقطعی شامل همه­ بیماران قلبی­عروقی است که از ابتدای خرداد 1386 لغایت پایان اردیبهشت 1388 در مرکز قلب تهران تحت درمان آنژیوپلاستی عروق کرونر با کاشت حداقل یک استنت قرار گرفتهاند. بیماران را به مدت سه سال مورد پیگیری قرار دادیم. پیشامدهای نیاز به احیای جریان خون، سکته قلبی غیرکشنده و مرگ قلبی به عنوان وقایع مهم قلبی­عروقی(برآمد) در نظر گرفته شدند. برای رده­بندی بیماران از درخت تصمیم با مخاطره­های رقیب با پیشامدهای مرکب استفاده کردیم. ‌داده‌ها با استفاده از نرم‌افزارهایIBM SPSS Statistics نسخه 24 و R نسخه 3. 3. 3 تحلیل شدند.
یافته ­ها: چهار فاکتور قندخون، وضعیت دیابت، شاخص توده­بدنی و سن، شش زیرگروه همگن برای بروز سکته قلبی غیرکشنده و نیاز به احیای جریان خون ایجاد کردند. احتمال بروز پیشامد نیاز به احیای­جریان­خون پس از 50 ماه حداکثر 8/17 درصد و احتمال بروز پیشامد سکته قلبی غیرکشنده حداکثر 7/9 درصد بود.
نتیجه­ گیری: بیماران مبتلا به بیماری عروق­کرونر پس از استنتگذاری میتوانند با کنترل وزن و وضعیت دیابت خود احتمال بروز پیشامدهای ناگوار قلبی را کاهش دهند.
متن کامل [PDF 2458 kb]   (1963 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: قلب
دریافت: 1396/8/13 | پذیرش: 1397/3/21

فهرست منابع
1. Clark JC, Lan VM. Heart failure patient learning needs after hospital discharge. Applied Nursing Research. 2004; 17(3):150-7.
2. Gaziano TA. Cardiovascular disease in the developing world and its cost-effective management. Circulation. 2005; 112(23): 3547-53.
3. Ramezani A, Djazayeri A, Koohdani F, Nematipour E, Javanbakht MH, Keshavarz SA, et al. Omega-3 fatty acids/vitamin e behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Current Topics in Nutraceuticals Research. 2015; 13(1):23.
4. Ramezani A, Koohdani F, Djazayeri A, Nematipour E, Keshavarz SA, Saboor-Yaraghi A-A, et al. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectin gene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. Anatolian journal of cardiology. 2016; 15(12):981.
5. Fakhrzadeh H, Larijani B, Bandarian F, Adibi H, Samavat T, Malek Afzali H, et al. The relationship between ischemic heart disease and coronary risk factors in population aged over 25 in Qazvin: A population-based study. J Qazvin Univ Med Sci. 2005; 35(9):26-34.
6. Euroaspire I. Lifestyle and risk-factor management and use of drug therapies in coronary patients from 15 countries. European heart journal. 2001; 22(7):554-72.
7. Group ES. EUROASPIRE: A European Society of Cardiology survey of secondary prevention of coronary heart disease: Principal results. European Heart Journal. 1997; 18(10):1569-.
8. Kotseva K, Wood D, Backer GD, Bacquer DD, Pyörälä K, Keil U, et al. EUROASPIRE III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. European Journal of Cardiovascular Prevention & Rehabilitation. 2009; 16(2):121-37.
9. Kannel WB. Contributions of the Framingham Study to the conquest of coronary artery disease. American Journal of Cardiology. 1988; 62(16):1109-12.
10. Marshall T. Identification of patients for clinical risk assessment by prediction of cardiovascular risk using default risk factor values. BMC Public Health. 2008; 8(1):25.
11. Ibrahim N, Kudus A. Decision tree for prognostic classification of multivariate survival data and competing risks. 2009.
12. Leblanc M, Crowley J. Survival Trees by Goodness of Split. Journal of the American Statistical Association. 1993; 88(422): 457-67.
13. Schumacher M, Hollander N, Schwarzer G, Sauerbrei W. Handbook of Statistics in Clinical Oncology, 2006.
14. Crowley J, Hoering A. Handbook of statistics in clinical oncology: CRC Press; 2012.
15. Pallara A. Binary decision trees approach to classification: a review of CART and other methods with some applications to real data. Statistica Applicata. 1992; 4(3):255-85.
16. Tsien CL, Fraser H, Long WJ, Kennedy RL. Using classification tree and logistic regression methods to diagnose myocardial infarction. Medinfo. 1998; 98.
17. Soni J, Ansari U, Sharma D, Soni S. Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications. 2011; 17(8):43-8.
18. Rao RB, Krishnan S, Niculescu RS. Data mining for improved cardiac care. ACM SIGKDD Explorations Newsletter. 2006; 8(1):3-10.
19. Zavrsnik J, Kokol P, Maleiae I, Kancler K, Mernik M, Bigec M. ROSE: decision trees, automatic learning and their applications in cardiac medicine. Medinfo MEDINFO. 1994; 8:1688.
20. Luo X, Turnbull BW. Comparing two treatments with multiple competing risks endpoints. Statistica Sinica. 1999: 985-97.
21. Loh W-Y. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2011; 1(1):14-23.
22. Terada T, Johnson JA, Norris C, Padwal R, Qiu W, Sharma AM, et al. Body Mass Index Is Associated with Differential Rates of Coronary Revascularization After Cardiac Catheterization. The Canadian journal of cardiology. 2017; 33(6):822-9.
23. Poirier P, McCrindle BW, Leiter LA. Obesity—It Must Not Remain the Neglected Risk Factor in Cardiology. Canadian Journal of Cardiology. 2015; 31(2):105-8.
24. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009; 9(1):88.
25. Engelgau MM, Geiss LS, Saaddine JB, et al. THe evolving diabetes burden in the united states. Annals of Internal Medicine. 2004; 140(11):945-50.
26. Hassan A, Newman A, Ko DT, Rinfret S, Hirsch G, Ghali WA, et al. Increasing rates of angioplasty versus bypass surgery in Canada, 1994-2005. American Heart Journal. 2010; 160(5):958-65.
27. Fukumoto R, Kawai M, Minai K, Ogawa K, Yoshida J, Inoue Y, et al. Conflicting relationship between age-dependent disorders, valvular heart disease and coronary artery disease by covariance structure analysis: Possible contribution of natriuretic peptide. PloS one. 2017; 12(7): e0181206.
28. Zhang XG, Zhang YQ, Zhao DK, Wu JX, Zhao J, Jiao XM, et al. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease. European review for medical and pharmacological sciences. 2014; 18(23):3593-600.
29. Ordonez C, editor Comparing association rules and decision trees for disease prediction. Proceedings of the international workshop on Healthcare information and knowledge management; 2006: ACM.
30. Ordonez C, Omiecinski E, De Braal L, Santana CA, Ezquerra N, Taboada JA, et al., editors. Mining constrained association rules to predict heart disease. Data Mining, 2001 ICDM 2001, Proceedings IEEE International Conference on; 2001: 433-440. IEEE.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله دانشگاه علوم پزشکی اراک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb