1. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. New England Journal of Medicine. 2003; 348(18):1764-75.
2. Alshamlan HM, Badr GH, Alohali YA. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification. Computational biology and chemistry. 2015; 56:49-60.
3. Binet J, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981; 48(1):198-206.
4. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013; 381(9881):1943-55.
5. Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC bioinformatics. 2006; 7(1):3.
6. Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural processing letters. 1999; 9(3):293-300.
7. Gokgoz E, Subasi A. Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control. 2015; 18:138-44.
8. Mohapatra S, Patra D, Satpathy S. An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Computing and Applications. 2014; 24(7-8):1887-904.
9. Tripathy B, Mittal D. Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis. Applied Soft Computing. 2016; 46:886-923.
10. Sadoughi F, Ghaderzadeh M, Fein R, Standring A. Comparison of Back propagation neural network and Back propagation neural network Based Particle Swarm intelligence in Diagnostic Breast Cancer. Applied Medical Informatics. 2014; 34(1):22.
11. Motamedi-Fakhr S, Moshrefi-Torbati M, Hill M, Hill CM, White PR. Signal processing techniques applied to human sleep EEG signals—A review. Biomedical Signal Processing and Control. 2014, 10:21-33.
12. Mohapatra S, Patra D, editors. Automated cell nucleus segmentation and acute leukemia detection in blood microscopic images. Systems in Medicine and Biology (ICSMB), 2010 International Conference on; 2010: IEEE.
13. Mohapatra S, Samanta SS, Patra D, Satpathi S, editors. Fuzzy based blood image segmentation for automated leukemia detection. Devices and Communications (ICDeCom), 2011 International Conference on; 2011: IEEE.
14. Ongun G, Halici U, Leblebicioglu K, Atalay V, Beksaç M, Beksaç S, editors. Feature extraction and classification of blood cells for an automated differential blood count system. Neural Networks, 2001 Proceedings IJCNN'01 International Joint Conference on; 2001: IEEE.
15. Agaian S, Madhukar M, Chronopoulos AT. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Systems journal. 2014; 8(3):995-1004.