1. Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. Am J Hum Genet. 2006;79(6):1089-97. pmid: 17186467 doi: 10.1086/509707
2. Tortoriello DV, Sidis Y, Holtzman DA, Holmes WE, Schneyer AL. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142(8):3426-34. pmid: 11459787 doi: 10.1210/endo.142.8.8319
3. Liu X, Andoh K, Yokota H, Kobayashi J, Abe Y, Yamada K, et al. Effects of growth hormone, activin, and follistatin on the development of preantral follicle from immature female mice. Endocrinology. 1998;139(5):2342-7. pmid: 9564843 doi: 10.1210/endo.139.5.5987
4. Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve. 2009;39(3):283-96. PMID: 19208403 doi: 10.1002/mus.21244.
5. Khalafi M, Aria B, Symonds ME, Rosenkranz SK. The effects of resistance training on myostatin and follistatin in adults: A systematic review and meta-analysis. Physiol Behav. 2023;269:114272. pmid: 37328021 doi: 10.1016/j.physbeh.2023.114272
6. Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel). 2018;6(3):76. pmid: 30087252 doi: 10.3390/sports6030076
7. Ben-Zeev T, Okun E. High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromolecular Med. 2021;23(3):335-8. pmid: 33386577 doi: 10.1007/s12017-020-08638-8
8. Sheykhlouvand M, Arazi H, Astorino TA, Suzuki K. Effects of a New Form of Resistance-Type High-Intensity Interval Training on Cardiac Structure, Hemodynamics, and Physiological and Performance Adaptations in Well-Trained Kayak Sprint Athletes. Front Physiol. 2022;13:850768. pmid: 35360225 doi: 10.3389/fphys.2022.850768
9. Haddock CK, Poston WS, Heinrich KM, Jahnke SA, Jitnarin N. The Benefits of High-Intensity Functional Training Fitness Programs for Military Personnel. Mil Med. 2016;181(11):e1508-e14. pmid: 27849484 doi: 10.7205/MILMED-D-15-00503
10. Gallo-Villegas J, Aristizabal JC, Estrada M, Valbuena LH, Narvaez-Sanchez R, Osorio J, et al. Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial (Intraining-MET). Trials. 2018;19(1):144. pmid: 29482601 doi: 10.1186/s13063-018-2541-7
11. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985). 2019;126(1):30-43. pmid: 30335577 doi: 10.1152/japplphysiol.00685.2018
12. Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14(2):107-15. pmid: 24533516 doi: 10.1080/17461391.2012.726653
13. Wilhelm EN, Rech A, Minozzo F, Botton CE, Radaelli R, Teixeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207-14. pmid: 25449853 doi: 10.1016/j.exger.2014.11.007
14. de Souza EO, Tricoli V, Aoki MS, Roschel H, Brum PC, Bacurau AV, et al. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses. J Strength Cond Res. 2014;28(11):3215-23. pmid: 24832980 doi: 10.1519/JSC.0000000000000525
15. Devin JL, Sax AT, Hughes GI, Jenkins DG, Aitken JF, Chambers SK, et al. The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial. J Cancer Surviv. 2016;10(3):467-79. pmid: 26482384 doi: 10.1007/s11764-015-0490-7
16. Heinrich KM, Patel PM, O'Neal JL, Heinrich BS. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. 2014;14:789. pmid: 25086646 doi: 10.1186/1471-2458-14-789
17. Estes RR, Malinowski A, Piacentini M, Thrush D, Salley E, Losey C, et al. The effect of high intensity interval run training on cross-sectional area of the vastus lateralis in untrained college students. Int J Exerc Sci. 2017;10(1):137-45. pmid: 28479954
18. Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc. 2004;36(4):574-82. pmid: 15064583 doi: 10.1249/01.mss.0000121952.71533.ea
19. Fortes MA, Pinheiro CH, Guimaraes-Ferreira L, Vitzel KF, Vasconcelos DA, Curi R. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats. Physiol Rep. 2015;3(7): e12457. pmid: 26197932 doi: 10.14814/phy2.12457
20. Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol. 2012;197(7):997-1008. pmid: 22711699 doi: 10.1083/jcb.201109091
21. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci. 2014;71(22):4361-71. pmid: 25080109 doi: 10.1007/s00018-014-1689-x
22. Dutra DB, Bueno PG, Silva RN, Nakahara NH, Selistre-Araujo HS, Nonaka KO, et al. Expression of myostatin, myostatin receptors and follistatin in diabetic rats submitted to exercise. Clin Exp Pharmacol Physiol. 2012;39(5):417-22. pmid: 22332899 doi: 10.1111/j.1440-1681.2012.05690.x
23. Attarzadeh Hosseini SR, Motahari Rad M, Moien Neia N. The effect of two different intensities resistance training on muscle growth regulatory myokines in sedentary young women. Journal of Arak University of Medical Sciences. 2016;19(7):56-65. doi: 10.1016/j.obmed.2017.01.004
24. Willoughby DS, Nelson MJ. Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Med Sci Sports Exerc. 2002;34(8):1262-9. pmid: 12165680 doi: 10.1097/00005768-200208000-00006
25. Jespersen JG, Nedergaard A, Andersen LL, Schjerling P, Andersen JL. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining. Scand J Med Sci Sports. 2011;21(2):215-23. pmid: 19903317 doi: 10.1111/j.1600-0838.2009.01044.x
26. Motevalli MS, Dalbo VJ, Attarzadeh RS, Rashidlamir A, Tucker PS, Scanlan AT. The effect of rate of weight reduction on serum myostatin and follistatin concentrations in competitive wrestlers. Int J Sports Physiol Perform. 2015;10(2):139-46. pmid: 24911427 doi: 10.1123/ijspp.2013-0475
27. Hansen JS, Rutti S, Arous C, Clemmesen JO, Secher NH, Drescher A, et al. Circulating Follistatin Is Liver-Derived and Regulated by the Glucagon-to-Insulin Ratio. J Clin Endocrinol Metab. 2016;101(2):550-60. pmid: 26652766 doi: 10.1210/jc.2015-3668
28. Shikhi Pir Kohi Z, Zakeri P, Dehkhoda M, Mirakhori Z, Amani -Shalamzari S. The effect of six weeks of functional training with blood flow restriction on myostatin to folistatin ratio and physical fitness in elderly men [in Persian]. JAEP. 2019;15(30):227-43. doi: 10.22080/jaep.2019.17016.1901
29. Janssen JA. Impact of Physical exercise on endocrine aging. Front Horm Res. 2016;47:68-81. pmid: 27348867 doi: 10.1159/000445158
30. Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab. 2005;288(6):E1110-9. pmid: 15644458 doi: 10.1152/ajpendo.00464.2004
31. Jang KS, Kang S, Woo SH, Bae JY, Shin KO. Effects of combined open kinetic chain and closed kinetic chain training using pulley exercise machines on muscle strength and angiogenesis factors. J Phys Ther Sci. 2016;28(3):960-6. pmid: 27134393 doi: 10.1589/jpts.28.960
32. Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, Bachl N, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). Eur J Appl Physiol. 2016;116(5):885-97. pmid: 26931422 doi: 10.1007/s00421-016-3344-8
33. Elliott BT, Herbert P, Sculthorpe N, Grace FM, Stratton D, Hayes LD. Lifelong exercise, but not short-term high-intensity interval training, increases GDF11, a marker of successful aging: a preliminary investigation. Physiol Rep. 2017;5(13): e13343. pmid: 28701523 doi: 10.14814/phy2.13343
34. Diel P, Schiffer T, Geisler S, Hertrampf T, Mosler S, Schulz S, et al. Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol Cell Endocrinol. 2010;330(1-2):1-9. pmid: 20801187 doi: 10.1016/j.mce.2010.08.015
35. Aoki MS, Soares AG, Miyabara EH, Baptista IL, Moriscot AS. Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. Muscle Nerve. 2009;40(6):992-9. pmid: 19705480 doi: 10.1002/mus.21426
36. Schwarz NA, McKinley-Barnard SK, Spillane MB, Andre TL, Gann JJ, Willoughby DS. Effect of resistance exercise intensity on the expression of PGC-1alpha isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle. Appl Physiol Nutr Metab. 2016;41(8):856-63. pmid: 27467217 doi: 10.1139/apnm-2016-0047
37. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83-90. pmid: 9139826 doi: 10.1038/387083a0
38. Murach KA. To hypertrophy and beyond! Myostatin and its association to intermuscular adipose tissue with exercise and aging. Am J Physiol Regul Integr Comp Physiol. 2018;315(3):R423-R4. pmid: 29741932 doi: 10.1152/ajpregu.00122.2018
39. Tanaka M, Masuda S, Yamakage H, Inoue T, Ohue-Kitano R, Yokota S, et al. Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese
40. obese patients. Diabetes research and clinical practice. 2018;142:195-202. pmid: 29859272 doi: 10.1016/j.diabres.2018.05.041
41. Roberson KB, Chowdhari SS, White MJ, Signorile JF. Loads and Movement Speeds Dictate Differences in Power Output During Circuit Training. J Strength Cond Res. 2017;31(10):2765-76. pmid: 27893478 doi: 10.1519/JSC.0000000000001731
42. Kliszczewicz B, Markert CD, Bechke E, Williamson C, Clemons KN, Snarr RL, et al. Acute Effect of Popular High-Intensity Functional Training Exercise on Physiologic Markers of Growth. J Strength Cond Res. 2021;35(6):1677-84. pmid: 30399116 doi: 10.1519/JSC.0000000000002933
43. Pugh JK, Faulkner SH, Turner MC, Nimmo MA. Satellite cell response to concurrent resistance exercise and high-intensity interval training in sedentary, overweight/obese, middle-aged individuals. Eur J Appl Physiol. 2018;118(2):225-38. pmid: 29071380 doi: 10.1007/s00421-017-3721-y
44. Babcock L, Escano M, D'Lugos A, Todd K, Murach K, Luden N. Concurrent aerobic exercise interferes with the satellite cell response to acute resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2012;302(12):R1458-65. pmid: 22492813 doi: 10.1152/ajpregu.00035.2012
45. Fealy CE, Nieuwoudt S, Foucher JA, Scelsi AR, Malin SK, Pagadala M, et al. Functional high-intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp Physiol. 2018;103(7):985-94. pmid: 29766601 doi: 10.1113/EP086844
46. Feito Y, Patel P, Sal Redondo A, Heinrich KM. Effects of eight weeks of high intensity functional training on glucose control and body composition among overweight and obese adults. Sports (Basel). 2019;7(2):51. pmid: 30813279 doi: 10.3390/sports7020051
47. Munoz-Martinez FA, Rubio-Arias JA, Ramos-Campo DJ, Alcaraz PE. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis. Sports Med. 2017;47(12):2553-68. pmid: 28822112 doi: 10.1007/s40279-017-0773-4