Volume 23, Issue 3 (August & September 2020)                   J Arak Uni Med Sci 2020, 23(3): 326-337 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasebi S, Oryan S, Mohajerani H R, Akbari N, Palizvan M R. The Effect of Intestinal Natural Micro Flora Removal on Susceptibility to Have Seizure in Male Wistar Rats. J Arak Uni Med Sci 2020; 23 (3) :326-337
URL: http://jams.arakmu.ac.ir/article-1-6243-en.html
1- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Department of Animal Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran. , sh-oryan@khu.ac.ir
3- Department of Microbiology, Faculty of Basic Science, Arak Branch, Islamic Azad University, Arak, Iran.
4- Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Full-Text [PDF 4822 kb]   (823 Downloads)     |   Abstract (HTML)  (1739 Views)
Full-Text:   (2161 Views)

1. Introduction

Epilepsy is a common neurological disorder after a stroke. The disease is characterized by dysfunction of brain neurons, which manifests in the form of periodic and unpredictable seizure [1]. Researches have shown that brain function is affected by intestinal microbiota [6]. The natural gut flora play role by altering immune responses, producing essential metabolites and neurotransmitters [9]. These changes can subsequently effect on all pathways involved in neuronal stimulation and inflammation [10]. Elimination of the intestinal natural micro flora by the use of antibiotics will remove their beneficial effects [23-25]. The aim of this study was to investigate the effect of intestinal natural micro flora removal on seizure susceptibility and seizure behavior modification with the use of probiotics in male Wistar rats.

2. Materials and Methods

This study was performed on 32 male Wistar rats with weight range 200-250 gr. The mice were prepared from the Razi Institute of Tehran. Animals were maintained under controlled temperature (22±2° C) and a 12:12-h light: dark cycle. The animals were randomly divided into four groups: (1) Control group, (2) Antibiotic group, (3) Probiotic group and (4) Antibiotic + probiotic group. To remove the micro flora, antibiotics (neomycin, ampicillin and metronidazole) for three weeks and for replacement of micro flora, probiotics (Lactobacilli casei, Lactobacillus acidophilus and Bifidobacterium bifidum) for four weeks were administered [26, 27]. Seizures were performed by intraperitoneal injection of pentylene tetrazole (45 mg/kg). The time between injection of pentylene tetrazole and the start of the second also fifth stage of seizures, the length of time the animals are in stage five seizure and Maximum seizure stage, measured as an important indicator of seizure behavior [28]. The micro flora was examined by the MRS Agar medium and the Pure Plate method [27]. The data were statistically analyzed in Graph Pad Prism v. 8.

3. Results

The results of this study showed that the use of antibiotics lead to decrease the number of intestinal bacteria (P<0.0001), increased the severity and stability of seizure stages (P<0.05) and decreased the time delay of seizure onset (P<0.05) compared to the control group. Probiotic consumption by modifying the intestinal micro flora (P<0.0001) reduced the severity of seizure and increased the time delay of seizure onset (P<0.05).

4. Discussion 

The results of the present study showed that the use of antibiotics reduces the beneficial bacteria in the gut, including lactobacillus and bifidobacteria. Similarly, other colleagues achieved these results [26, 29]. Antibiotic treatment also increased the severity of seizures and reduced the time required for seizures to occur in the seizure model caused by pentylene tetrazole. This means that removing the natural intestinal flora can subsequently eliminate the effects of beneficial bacteria. For example, Jesus-Servando et al. showed that chronic stress can facilitate epilepsy in an animal model by altering the gut microbial profile [40]. Xie et al. reported that ketogenic diets alter intestinal microbiome in resistant epileptic children [41]. 

Comparison of bacterial colony counts in rat feces showed that taking probiotic supplements, a mixture of lactobacillus and bifidobacteria, could restore the population of natural intestinal flora lost due to antibiotic treatment. Allori et al. in the animal and Plummer et al. in the human model proved that taking probiotic supplements could restore the bacteria removed from the gut [27, 31]. Comparison of seizure behavior parameters in different groups showed that the use of probiotic supplementation moderated the seizure behavior. Similar to the present study, Bagheri and her colleagues reported a reduction in pentylene tetrazole-induced Kindling attacks due to probiotic use [44]. 

5. Conclusion

It seems that elimination of micro flora has the potential to induce seizures, which can be compensated by administration of probiotics.

Ethical Considerations

Compliance with ethical guidelines

This study with Ethics Code IR.ARAKMU.REC.1395.176 was approved by the Research Ethics Committee of Arak University of Medical Sciences. 

Funding

This article was supported by Islamic Azad University of Tehran, Science and Research Branch, (Code: 9412) and exteracted from the PhD. dissertation of the first author Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University.

Authors' contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank the Islamic Azad University of Tehran, Science and Research Branch for financial support.

 

References

1.Thurman DJ, Ettore B, Charles E, Berg AT, Buchhalter JR, Ding D, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011; 52(Suppl. 7):2-26. [DOI:10.1111/j.1528-1167.2011.03121.x] [PMID]

2.Holmes GL. The long-term effects of seizures on the developing brain: clinical and laboratory issues. Brain and Dev, 1991; 13(6):393-409. [DOI:10.1016/S0387-7604(12)80037-4]

3.Bradford H. Glutamate, GABA and epilepsy. Prog Neurobiol. 1995; 47(6):477-511. [DOI:10.1016/0301-0082(95)00030-5]

4.Aguiar CCT, Almeida AB, Araújo PVP, de Abreu RNDC, Chaves EMC, Macêdo DS, et al. Oxidative stress and epilepsy: literature review. Oxidative medicine and cellular longevity, 2012; 2012:795259. [DOI:10.1155/2012/795259] [PMID] [PMCID]

5.Vezzani A, Granata T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia. 2005; 46(11):1724-43. [DOI:10.1111/j.1528-1167.2005.00298.x] [PMID]

6.Galland L. The gut microbiome and the brain. J Med Food. 2014; 17(12):1261-72. [DOI:10.1089/jmf.2014.7000] [PMID] [PMCID]

7.Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489(7415):220-30. [DOI:10.1038/nature11550] [PMID] [PMCID]

8.De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, et al. Can we ‘seize’the gut microbiota to treat epilepsy? Neurosci Biobehav Rev. 2019; 107:750-64. [DOI:10.1016/j.neubiorev.2019.10.002] [PMID]

9.Cryan JF, O’mahony S. The microbiome‐gut‐brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011; 23(3):187-92. [DOI:10.1111/j.1365-2982.2010.01664.x] [PMID]

10.Wu J, Zhang Y, Yang H, Rao Y, Miao J, Lu X. Intestinal microbiota as an alternative therapeutic target for epilepsy. Can J Infect Dis Med Microbiol. 2016; 2016:9032809. [DOI:10.1155/2016/9032809] [PMID] [PMCID]

11.Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat Rev Endocrinol. 2011; 7(11):639-46. [DOI:10.1038/nrendo.2011.126] [PMID]

12.Dhakal R, Bajpai VK, and Baek KH. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Braz J Microbiol. 2012; 43(4):1230-41. [DOI:10.1590/S1517-83822012000400001] [PMID] [PMCID]

13.Roselli M, Pieper R, Rogel-Gaillard C, de Vries H, Bailey M, Smidt H, et al. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol. 2017; 233:104-19. [DOI:10.1016/j.anifeedsci.2017.07.011]

14.Mazloom Z, Yousefinejad A, Dabbaghmanesh MH. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: A clinical trial. Iran J Med Sci. 2013; 38(1):38-43. [PMID] [PMCID]

15.Cha BK, Jung SM, Choi CH, Song ID, Lee HW, Kim HJ, et al. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J Clin Gastroenterol. 2012; 46(3):220-27. [DOI:10.1097/MCG.0b013e31823712b1] [PMID]

16.Sansonetti PJ, Medzhitov R. Learning tolerance while fighting ignorance. Cell, 2009. 138(3):416-20. [DOI:10.1016/j.cell.2009.07.024] [PMID]

17.Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment Pharmacol Ther. 2005; 22(6):495-12. [DOI:10.1111/j.1365-2036.2005.02615.x] [PMID]

18.Riedel CU, Foata F, Philippe D, Adolfsson O, Eikmanns BJ, Blum S, et al. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World J Gastroenterol. 2006; 12(23):3729-35. [DOI:10.3748/wjg.v12.i23.3729] [PMID] [PMCID]

19.Harmsen HJ, Wildeboer-Veloo AC, Raang GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000; 30(1):61-7. [DOI:10.1097/00005176-200001000-00019] [PMID]

20.Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol. 2002; 68(6):2982-90. [DOI:10.1128/AEM.68.6.2982-2990.2002] [PMID] [PMCID]

21.Dinan TG, Stilling, Roman M, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015; 63:1-9. [DOI:10.1016/j.jpsychires.2015.02.021] [PMID]

22.O’Mahony L, McCarthy j, Kelly P, Hurley G, Luo F, Chen K, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology. 2005; 128:541-51. [DOI:10.1053/j.gastro.2004.11.050] [PMID]

23.Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature; 2012; 488(7413):621-6. [DOI:10.1038/nature11400] [PMID] [PMCID]

24.Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016; 352(6285):544-5. [DOI:10.1126/science.aad9358] [PMID] [PMCID]

25.Sullivan Å, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001; 1(2):101-14. [DOI:10.1016/S1473-3099(01)00066-4] [PMID]

26.Zhou J, Pillidge C, Gopal P, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005; 98(2):211-7. [DOI:10.1016/j.ijfoodmicro.2004.05.011] [PMID]

27.Plummer SF, Garaiova I, Sarvotham T, Cottrell SL, Scouiller SL, Weaver MA, et al. Effects of probiotics on the composition of the intestinal microbiota following antibiotic therapy. Int J Antimicrob Agents. 2005; 26(1):69-74. [DOI:10.1016/j.ijantimicag.2005.04.004] [PMID]

28.Davoudi M, Shojaei A, Palizvan MR, Javan M, Mirnajafi-Zadeh J. Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat. Epilepsy Res. 2013; 106(1-2):54-63. [DOI:10.1016/j.eplepsyres.2013.03.016] [PMID]

29.Narayanan R, Raghavan KT. Antibiotic susceptibility profile of lactic acid bacteria with probiotic potential isolated from humans.Biomed J Sci Tech Res. 2019; 17(4):12964-6. [DOI:10.26717/BJSTR.2019.17.003033]

30.Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol. 2017; 134:114-26. [DOI:10.1016/j.bcp.2016.09.007] [PMID]

31.Allori C, Agüero G, de Ruiz Holgado AP, de Nader OM, Perdigon G. Gut mucosa morphology and microflora changes in malnourished mice after renutrition with milk and administration of Lactobacillus casei. J Food Prot. 2000; 63(1):83-90. [DOI:10.4315/0362-028X-63.1.83] [PMID]

32.Beilharz J, Kaakoush N, Maniam J, Morris MJ. Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol psychiatry. 2018; 23(2):351-61. [DOI:10.1038/mp.2017.38] [PMID]

33.Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011; 141(2):599-609. e3. [DOI:10.1053/j.gastro.2011.04.052] [PMID]

34.Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med. 2014; 20(9):509-18. [DOI:10.1016/j.molmed.2014.05.002] [PMID]

35.Lum GR, Olson CA, and Hsiao EY. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol Dis. 2020; 135:104576. [DOI:10.1016/j.nbd.2019.104576] [PMID]

36.Foster JA, Neufeld KAM. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36(5):305-12. [DOI:10.1016/j.tins.2013.01.005] [PMID]

37.MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res. 2011; 217(1):47-54. [DOI:10.1016/j.bbr.2010.10.005] [PMID]

38.Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström ZK, Allander T, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 2019; 5(1):1-13. [DOI:10.1038/s41522-018-0073-2] [PMID] [PMCID]

39.Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018; 147:102-7. [DOI:10.1016/j.eplepsyres.2018.09.013] [PMID]

40.Medel-Matus JS, Shin D, Dorfman E, Sankar R, Mazarati A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open. 2018; 3(2):290-4. [DOI:10.1002/epi4.12114] [PMID] [PMCID]

41.Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, Li YH, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol. 2017; 23(33):6164-71. [DOI:10.3748/wjg.v23.i33.6164] [PMID] [PMCID]

42.Galdeano CM, de Moreno de LeBlanc A, Vinderola G, Bonet ME, Perdigón G. Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clin Vaccine Immunol. 2007; 14(5):485-92. [DOI:10.1128/CVI.00406-06] [PMID] [PMCID]

43.Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018; 145:163-8. [DOI:10.1016/j.eplepsyres.2018.06.015] [PMID]

44.Bagheri S, Heydari A, Alinaghipour A, Salami M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav. 2019; 95:43-50. [DOI:10.1016/j.yebeh.2019.03.038] [PMID]

45.Asemi Z, Zare Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab. 2013; 63(1-2):1-9. [DOI:10.1159/000349922] [PMID]

46.Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011; 108(38):16050-5. [DOI:10.1073/pnas.1102999108] [PMID] [PMCID]

47.Cui HH, Chen CL, Wang JD, Yang YJ, Cun Y, Wu JB, et al. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol. 2004; 10(10):1521-5. [DOI:10.3748/wjg.v10.i10.1521] [PMID] [PMCID]

Type of Study: Original Atricle | Subject: Basic Sciences
Received: 2020/02/7 | Accepted: 2020/08/1

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb