Volume 23, Issue 5 (December & January - Special Issue on COVID-19 2020)                   J Arak Uni Med Sci 2020, 23(5): 614-631 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hojabr Rajeooni A, Mehrbod P. Molecular Structure of SARS-CoV-2 Virus and the Proposed Related Drugs. J Arak Uni Med Sci 2020; 23 (5) :614-631
URL: http://jams.arakmu.ac.ir/article-1-6323-en.html
1- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
2- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran. , mehrbode@yahoo.com
Full-Text [PDF 9801 kb]   (3955 Downloads)     |   Abstract (HTML)  (3791 Views)
Full-Text:   (23993 Views)
1. Introduction
OVID-19 is one of the most important viral diseases in the current decade, which has created a widespread pandemic in the world. This disease was first reported in patients with symptoms of acute respiratory distress syndrome in December 2019 in Wuhan, Hubei Province, China. On January 8, 2020, the Centers for Disease Control and Prevention (CDC) in China identified the virus and the World Health Organization (WHO) named it COVID-19. According to ICTV data, the virus of this disease is called SARS-CoV-2, which is a family of Coronaviridae. Viruses in this family in 2002 (SARS-CoV) and 2012 (MERS-CoV) spread to several countries and led to death and economic loss. The present study aims to evaluate COVID-19 from different aspects (evolutionary process and molecular biology of the virus), and review the effective drugs for fighting against this disease (Figure 1).

2. Materials and Methods
The articles were studied based on information available in the WHO database. SARS-CoV-2 proteins were identified molecularly and functionally using data analysis and bioinformatics methods, and then related drugs and their effect on virus replication and inhibition were investigated.
3. Results
Studies on the structure of SARS-CoV-2 and drug therapies to inhibit the progression of the disease showed that, depending on the rate of disease progression, the use of different drug strategies is effective in the treatment of COVID-19. Molecular studies showed that the use of viral protease inhibitors and nucleoside analogues can be effective in the course of the disease, and intravenous immunoglobulin, aminoquinoline compounds, TMPRSS2 inhibitors, and viral S protein can be effective in the early stages of the disease. In addition to these pharmacological treatments, the use of synthetic ACE2 proteins can be effective in the prevention of the disease, and molecular inhibitors of nucleic acid and host factors can be effective in the course of the disease (Figures 2 & 3). 

4. Discussion and conclusion
The present study showed that the study of the structure of SARS-CoV-2 and its biology in the body is very important to control the virus. Identification of drugs that affect the virus based on its biological structure is essential. Due to the structural changes of the virus and successive mutations in the virus genome and the emergence of resistant strains or highly contagious strains, further studies in the field of SARS-CoV-2 structure and its changes in the body is needed for designing pharmaceutical and therapeutic strategies. The use of these strategies varies according to the stage of the disease, as some drugs prevent the virus from entering the target cells in the early stages of the disease, and others, in combination with the virus’s surface glycoproteins, block the binding of the virus antigen to receptors in the host cells. In the late stages of the disease, antiviral drugs, including protease inhibitors and nucleoside analogues, interfere with the replication and structure of the virus. Due to the intermittent changes of SARS-CoV-2 and the development of drug-resistant viruses, it is important to continuously review virological and clinical studies and the performance of existing drugs against this virus.

Ethical Considerations
Compliance with ethical guidelines

All ethical principles were observed in this study.

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors. 

Authors' contributions
Conceptualization, data analysis, and text writing and review:Ali Hojbar Rajaeuni, Parvaneh Mehrbod; Study:Ali Hojbar Rajaouni.

Conflicts of interest
The authors declare no conflict of interest.

  1. Siddell SG, Walker PJ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, et al. Additional changes to taxonomy ratified in a special vote by the international committee on taxonomy of viruses (october 2018). Arch Virol. 2019; 164(3):943-6. [DOI:10.1007/s00705-018-04136-2]
  2. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species severe acute respiratory syndrome-related coronavirus:Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-44. [DOI:10.1038/s41564-020-0695-z] [PMCID]
  3. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3. [DOI:10.1038/s41586-020-2012-7] [PMCID]
  4. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483):1260-3. [DOI:10.1126/science.abb2507] [PMCID]
  5. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah N, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020; 176:104742. [DOI:10.1016/j.antiviral.2020.104742] [PMCID]
  6. Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of sars-cov-2. Cell. 2020; 181(2):223-7. [DOI:10.1016/j.cell.2020.03.035]
  7. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 2020; 117(17):9241-3. [DOI:10.1073/pnas.2004999117]
  8. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone:A knowledge resource to understand virus diversity. Nucleic Acids Res. 2011; 39:D576-82. [DOI:10.1093/nar/gkq901]
  9. Lokugamage KG, Narayanan K, Huang C, Makino S. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol. 2012; 86(24):13598-608. [DOI:10.1128/JVI.01958-12] [PMCID]
  10. Cornillez-Ty CT, Liao L, Yates 3rd JR, Kuhn P, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol. 2009; 83(19):10314-8. [DOI:10.1128/JVI.00842-09] [PMCID]
  11. Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007; 466(1):8-14. [DOI:10.1016/j.abb.2007.07.006]
  12. Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009; 83(13):6689-705. [DOI:10.1128/JVI.02220-08] [PMCID]
  13. Saikatendu KS, Joseph JS, Subramanian V, Clayton T, Griffith M, Moy K, et al. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1’’-phosphate dephosphorylation by a conserved domain of nsP3. Structure. 2005; 13(11):1665-75. [DOI:10.1016/j.str.2005.07.022]
  14. Hognon C, Miclot T, Iriepa CG, France-Monerris A, Grandemange S, Terenzi A, et al. Role of RNA Guanine quadruplexes in favoring the dimerization of SARS unique domain in coronaviruses. J Phys Chem Lett. 2020; 11(14):5661-7. [DOI:10.1021/acs.jpclett.0c01097]
  15. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3):269-71. [DOI:10.1038/s41422-020-0282-0] [PMCID]
  16. Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014; 10(8):1426-41. [DOI:10.4161/auto.29309]
  17. te Velthuis AJW, van den Worm SHE, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012; 40(4):1737-47. [DOI:10.1093/nar/gkr893]
  18. Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS, Schultz LW. Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. J Virol. 2009; 83(7):3007-18. [DOI:10.1128/JVI.01505-08] [PMCID]
  19. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. RNA 3’-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA. 2012; 109(24):9372-7. [DOI:10.1073/pnas.1201130109]
  20. Ahn D-G, Choi J-K, Taylor DR, Oh J-W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol. 2012; 157(11):2095-104. [DOI:10.1007/s00705-012-1404-x]
  21. Adedeji AO, Marchand B, Te Velthuis AJW, Snijder EJ, Weiss S, Eoff RL, et al. Mechanism of nucleic acid unwinding by SARS-CoV helicase. PloS One. 2012; 7(5):e36521. [DOI:10.1371/journal.pone.0036521] [PMCID]
  22. Tanner JA, Watt RM, Chai Y-B, Lu L-Y, Lin MC, Peiris JS, et al. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5’ to 3’ viral helicases. J Biol Chem. 2003; 278(41):39578-82. [DOI:10.1074/jbc.C300328200]
  23. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2):185-92. [DOI:10.1007/s11684-020-0754-0]
  24. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271-80.e8. [DOI:10.1016/j.cell.2020.02.052] [PMCID]
  25. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):281-92.e6. [DOI:10.1016/j.cell.2020.02.058]
  26. Zou J, Yin J, Fang L, Yang M, Wang T, Wu W, et al. Computational prediction of mutational effects on the SARS-CoV-2 binding by relative free energy calculations. J Chem Inf Model. 2020; 60(12):5794-802. [DOI:10.1021/acs.jcim.0c00679]
  27. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PloS One. 2009; 4(12):e8342. [DOI:10.1371/journal.pone.0008342] [PMCID]
  28. Tan YJ, Tham PY, Chan DZL, Chou CF, Shen S, Fielding BC, et al. The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J Virol. 2005; 79(15):10083-7. [DOI:10.1128/JVI.79.15.10083-10087.2005]
  29. Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CKL, et al. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci USA. 2006; 103(33):12540-5. [DOI:10.1073/pnas.0605402103] [PMCID]
  30. Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, et al. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol. 2005; 86(Pt 7):1921-30. [DOI:10.1099/vir.0.80813-0]
  31. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. SARS-CoV-2 envelope and membrane proteins:Differences from closely related proteins linked to cross-species transmission?. Biomed Res Int. 2020; 2020:4389089. [DOI:10.1155/2020/4389089]
  32. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 2020; 7(3):ofaa102. [DOI:10.1093/ofid/ofaa102]
  33. Vaarala MH, Porvari KS, Kellokumpu S, Kyllönen AP, Vihko PT. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol. 2001; 193(1):134-40. [DOI:10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T]
  34. Zhang BN, Wang Q, Liu T, Dou SQ, Qi X, Jiang H, et al. Expression analysis of 2019-nCoV related ACE2 and TMPRSS2 in eye tissues. Zhonghua Yan Ke Za Zhi. 2020; 56(6):438-46. [DOI:10.3760/cma.j.cn112142-20200310-00170]
  35. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005; 2:69. [DOI:10.1186/1743-422X-2-69] [PMCID]
  36. Hirano T, Murakami M. COVID-19:A new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52(5):731-3. [DOI:10.1016/j.immuni.2020.04.003]
  37. Shanker AK, Bhanu D, Alluri A, Gupta S. Whole genome sequence analysis and homology modelling of a 3C Like Peptidase and 1 a non-structural protein 3 of the SARS-CoV-2 shows protein ligand interaction with an Aza-Peptide and a noncovalent lead inhibitor with possible antiviral properties. New J Chem. 2020; 44(22):9202-12. [DOI:10.1039/D0NJ00974A]
  38. Vankadari N. Arbidol:A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents. 2020; 56(2):105998. [DOI:10.1016/j.ijantimicag.2020.105998]
  39. Yang C, Ke C, Yue D, Li W, Hu Z, Liu W, et al. Effectiveness of arbidol for COVID-19 prevention in health professionals. Front Pub Health. 2020; 8:249. [DOI:10.3389/fpubh.2020.00249] [PMCID]
  40. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020; 30(4):343-55. [DOI:10.1038/s41422-020-0305-x] [PMCID]
  41. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020; 12(541):eabb5883. [DOI:10.1126/scitranslmed.abb5883]
  42. Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S-H. An overview of severe acute respiratory syndrome–Ccoronavirus (SARS-CoV) 3CL protease inhibitors:Peptidomimetics and small molecule chemotherapy. J Med Chem. 2016; 59(14):6595-628. [DOI:10.1021/acs.jmedchem.5b01461]
  43. Ohashi H, Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, et al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. BioRxiv. Preprint. 2020. [DOI:10.1101/2020.04.14.039925]
  44. Xu Z, Yao H, Shen J, Wu N, Xu Y, Lu X, et al. Nelfinavir is active against SARS-CoV-2 in Vero E6 cells. ChemRxiv. Preprint. 2020. [DOI: 10.26434/chemrxiv.12039888.v1]
  45. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Nat Acad Sci USA. 2003; 100(23):13190-5. [DOI:10.1073/pnas.1835675100]
  46. Procko E. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2. BioRxiv. 2020; 2020.03.16.994236. [DOI:10.1101/2020.03.16.994236]
  47. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara  MJ, et al. A SARS-CoV-2-human protein-protein interaction map reveals targets for drug repurposing. BioRxiv. 2020; 2020.03.22.002386. [DOI:10.1101/2020.03.22.002386]
  48. Shu T, Huang M, Wu D, Ren Y, Zhang X, Han Y, et al. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin. 2020; 35(3):321-9. [DOI:10.1007/s12250-020-00242-1] [PMCID]
  49. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell. 2020; 182(3):685-712.e19. [DOI:10.1016/j.cell.2020.06.034]
  50. Ziv O, Price J, Shalamova L, Kamenova T, Goodfellow I, Weber F, et al. The short- and long-range RNA-RNA Interactome of SARS-CoV-2. Mol Cell. 2020; 80(6):1067-77.e5. [DOI:10.1016/j.molcel.2020.11.004]
  51. Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, et al. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2020 rna.078121.120. [DOI:10.1261/rna.078121.120]
  52. Vankadari N, Jeyasankar NN, Lopes WJ. Structure of the SARS-CoV-2 Nsp1/5′-Untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence. J Physic Chem Lett. 2020; 11(22):9659-68. [DOI:10.1021/acs.jpclett.0c02818] [PMCID]
  53. Lulla V, Wandel MP, Bandyra KJ, Dendooven T, Yang X, Doyle N, et al. Antisense oligonucleotides target a nearly invariant structural element from the SARS-CoV-2 genome and drive RNA degradation. BioRxiv. Preprint. 2020. [DOI:10.101/2020.09.18.304139] 
  54. Verma NK, Fazil MHUT, Duggan SP, Kelleher D. Combination therapy using inhalable gapmeR and recombinant ACE2 for COVID-19. Front Mol Biosci. 2020; 7:197. [DOI:10.3389/fmolb.2020.00197]
  55. Gu SH, Yu CH, Song Y, Kim NY, Sim E, Choi JY, et al. A Small interfering RNA lead targeting RNA-dependent RNA-polymerase effectively inhibit the SARS-CoV-2 infection in Golden Syrian hamster and Rhesus macaque. BioRxiv. Preprint. 2020. [DOI:10.101/2020.07.07.190967]
  56. Mu J, Xu J, Zhang L, Shu T, Wu D, Huang M, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci. 2020; 63(9):1-4. [DOI:10.1007/s11427-020-1692-1] [PMCID]
  57. Fukushima A, Fukuda N, Lai Y, Ueno T, Moriyama M, Taguchi F, et al. Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus. Intervirology. 2009; 52(2):92-9. [DOI:10.1159/000215946]
Type of Study: Review Article | Subject: COVID-19
Received: 2020/05/16 | Accepted: 2020/11/29

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb