Volume 24, Issue 6 (February & March 2022)                   J Arak Uni Med Sci 2022, 24(6): 778-791 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahidi F, Kashef M, Delfani Z. A Review of Exercise-Based Rehabilitation Strategies in Patients with Myocardial Infarction: Focus on High-Intensity Interval Training. J Arak Uni Med Sci 2022; 24 (6) :778-791
URL: http://jams.arakmu.ac.ir/article-1-6922-en.html
1- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
2- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran. , venus_delfani@yahoo.com
Full-Text [PDF 7023 kb]   (1461 Downloads)     |   Abstract (HTML)  (1877 Views)
Full-Text:   (2332 Views)
1. Introduction
Despite improvements in medical therapy and standard care, exercise-based rehabilitation programs have been shown to have beneficial cardiovascular effects in patients with Myocardial Infarction (MI). Many studies have shown that High-Intensity Interval Training (HIIT) has more protective effects on myocardial tissue than aerobic exercise. Although HIIT has been reported to protect the heart against MI, but accurate knowledge of molecular targets for the treatment of MI is not available yet. Therefore, this study aims to review the current rehabilitation strategies with a special focus on the mechanisms and clinical effects of HIIT in patients with MI.
2. Materials & Methods 
This is a systematic review study. A search was conducted in reputable databases such as PubMed, Science Direct, Google Scholar, Scopus, and Springer on related studies without restriction of publication year using the keywords “microRNAs (miRNA) and myocardial infarction”, “cardiac rehabilitation and myocardial infarction”, “cardiac rehabilitation and High-Intensity Interval Training (HIIT)”, and “High-Intensity Interval Training (HIIT) and myocardial infarction”. The research articles published in reputable journals in English without gender limitations, those included participants diagnosed with MI and those with full details of the training protocol (repetition, intensity and duration), training method, and total duration of the intervention were included in the study. Short papers, lectures or conference papers, unpublished papers, retrospective studies, the studies where participants had heart failure (ejection fraction <40), arrhythmia, or a specific disease (e.g., diabetes, chronic obstructive pulmonary disease, or stroke) were excluded.
3. Results 
According to the studies, HIIT is a safe and effective method to improve cardiac function in patients with MI, and the protective effects of HIIT on coping with myocardial ischemia/reperfusion injury may be related to the RIP1-RIP3-MLKL axis [53]. Studies also showed that low-volume HIIT may be a powerful and effective training to improve functional capacity [56]. In the meantime, low-intensity interval training is more effective in reducing cardiac tissue damage as well as creatinine kinase amount by creating adaptation in increasing inhibitory factors and reducing stimulants in the process of necrosis and apoptosis. Studies showed that HIIT can improve coronary artery circulation, increase mitochondrial muscle function, repair vascular endothelial cells, reduce fibrosis, increase muscle cross-section, and increase physical function. In addition, HIIT can increase plasma and myocardial Klotho protein levels by reducing myocardial TRPC6 expression, enhancing antioxidant defense and the protective effect on the myocardium, and reducing myocardial ischemia reperfusion. Thus, the HIIT exerts significant changes in molecular targets and cell pathway by preventing abnormal changes in mass, size, geometry, and function of heart after MI.
4. Discussion & Conclusion
Receptor-interacting protein 1 (RIP1)-dependent necrosis contributes to long-term cardiac regeneration and post-MI side effects. Necrostatin-1, a specific inhibitor of necroptosis, has been shown to disrupt the interaction between RIP1 and RIP3 to reduce this programmed cell death, inflammatory response, reactive oxygen species production, and subsequent adverse cardiac regeneration [55]. Thus, HIIT can protect against long-term cardiac regeneration after MI by targeting RIP1-dependent necroptosis [50]. These findings confirm the protective effects of long-term HIIT on MI-induced cardiac regeneration and provide a fundamental basis for the higher efficiency of exercise-based cardiac rehabilitation after MI and future research [50]. A low-volume HIIT program (<10 minutes of high-intensity exercise per session) two days a week seems to be an effective stimulus for achieving a clinically improved cardiorespiratory fitness in individuals after MI [15]. Moreover, it was shown that low-volume HIIT multiplies the PGC-1α gene mRNA, which regulates mitochondrial biogenesis in muscle [61]. 
Exercise-induced oxidative stress may increase RNA polymerase III, which plays a key role in the expression of miR-1 and miR-133 genes, thereby reducing cardiac cell apoptosis [61]. Activation of hypoxia-inducible factor-1 alpha (HIF-1 α) or PGC-1α may promote adaptations such as erythropoietin gene expression and endothelial growth factor gene expression, initiating glycolytic enzyme gene expression and reducing the adverse effects of exposure to hypoxia. Activation of HIF-1α along with HIIT reduces oxygen delivery to skeletal muscle; this reduction, like exercise-induced feedback, causes adaptations in blood vessels, including increased RNA polymerase III and increased expression of miR-133 and miR-1 genes [2324]. Therefore, HIIT targets myocardial necroptosis caused by oxidative stress and protects the heart against adverse left ventricular regeneration after MI. It can be considered in post-MI cardiac rehabilitation programs.

Ethical Considerations
Compliance with ethical guidelines

All ethical principles in writing were observed according to the instructions of the National Ethics Committee and the COPE regulations.

Funding
The authors have followed the criteria of the International Committee of Medical Journal Editors.

Authors' contributions
The authors have complied with the criteria of the International Committee of Medical Journal Editors (ICMJE).

Conflicts of interest
The authors declare no conflict of interest.

Acknowledgements
The authors express their gratitude to the Vice-Chancellor for Research and Technology of Shahid Rajaee Teacher Training University .
 

References
  1. Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J. 2019; 95(1122):210-6. [DOI:10.1136/postgradmedj-2019-136409] [PMID]
  2. Zhang J, Huang C, Meng X, Xu K, Shi Y, Jiang L, et al. Effects of different exercise interventions on cardiac function in rats with myocardial infarction. Heart Lung Circ. 2021; 30(5):773-80. [DOI:10.1016/j.hlc.2020.08.004] [PMID]
  3. Lujan HL, DiCarlo SE. Mimicking the endogenous current of injury improves post-infarct cardiac remodeling. Med Hypotheses. 2013; 81(4):521-3. [DOI:10.1016/j.mehy.2013.06.022] [PMID]
  4. Zornoff LA, Paiva SA, Minicucci MF, Spadaro J. Experimental myocardium infarction in rats: Analysis of the model. Arq Bras Cardiol. 2009; 93(4):434-40. [DOI:10.1590/S0066-782X2009001000018] [PMID]
  5. Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2014; 2014(12):CD011273. [DOI:10.1002/14651858.CD011273.pub2] [PMID] [PMCID]
  6. Abell B, Glasziou P, Hoffmann T. The contribution of individual exercise training components to clinical outcomes in randomised controlled trials of cardiac rehabilitation: A systematic review and meta-regression. Sports Med Open. 2017; 3(1):19. [DOI:10.1186/s40798-017-0086-z] [PMID] [PMCID]
  7. Esteki Ghashghaei F, Sadeghi M, Yazdekhasti S. [A review of cardiacrehabilitation benefits on physiological aspects in patients with cardiovascular disease (Persian)]. J Res Rehabil Sci. 2012; 7(5):706-15. https://www.sid.ir/en/journal/ViewPaper.aspx?id=256589
  8. Gharaat MA, Kashef M, Jameie B, Rajabi H. Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training. J Res Med Sci. 2019; 24:32. [DOI:10.4103/jrms.JRMS_292_18] [PMID[ [PMCID]
  9. Moonikh K, Kashef M, Mahmoudi K, Salehpour M. [The effect of high-intensity interval training (HIIT) with Quercetin supplementation on oxidative stress and level of concentric pathologic hypertrophy in cardiovascular patients after angioplast (Persian)]. Tehran Univ Med J. 2020; 78(5):304-12. https://tumj.tums.ac.ir/article-1-10600-en.html
  10. Xie B, Yan X, Cai X, Li J. Effects of high-intensity interval training on aerobic capacity in cardiac patients: A systematic review with meta-analysis. Biomed Res Int. 2017; 2017:5420840. [DOI:10.1155/2017/5420840] [PMID] [PMCID]
  11. Zare Karizak S, Kashef M, Gaeini AA, Nejatian M. [The comparison of two protocol of interval and continues aerobic training on level of concentric pathologic hypertrophy and cardiac function in patients after coronary artery bypass grafting surgery(Persian)]. J Pract Stud Biosci Sport. 2017; 5(9):9-20. [DOI:10.22077/JPSBS.2017.617]
  12. Mitchell BL, Lock MJ, Davison K, Parfitt G, Buckley JP, Eston RG. What is the effect of aerobic exercise intensity on cardiorespiratory fitness in those undergoing cardiac rehabilitation? A systematic review with meta-analysis. Br J Sports Med. 2018; 53(21):1341-51. [DOI:10.1136/bjsports-2018-099153] [PMID]
  13. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015; 45(5):679-92. [DOI:10.1007/s40279-015-0321-z] [PMID]
  14. Trachsel LD, David LP, Gayda M, Henri C, Hayami D, Thorin-Trescases N, et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clin Cardiol. 2019; 42(12):1222-31. [DOI:10.1002/clc.23277] [PMID] [PMCID]
  15. Jayo-Montoya JA, Maldonado-Martín S, Aispuru GR, Gorostegi-Anduaga I, Gallardo-Lobo R, Matajira-Chia T, et al. Low-volume high-intensity aerobic interval training is an efficient method to improve cardiorespiratory fitness after myocardial infarction: Pilot study from the interfarct project. J Cardiopulm Rehabil Pre. 2020; 40(1):48-54. [DOI:10.1097/HCR.0000000000000453] [PMID]
  16. Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol. 2014; 12(3):135-42. [DOI:10.1038/nrcardio.2014.207] [PMID]
  17. Chen Z, Li C, Lin K, Zhang Q, Chen Y, Rao L. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? Anatol J Cardiol. 2018; 19(2):140-7. [DOI:10.14744/AnatolJCardiol.2017.8124] [PMCID]
  18. Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R, et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med. 2019; 23(9):6005-16. [DOI:10.1111/jcmm.14463] [PMID][PMCID]
  19. Liu NN, Olson E. Micro RNA regulatory networks in cardiovascular development. Dev Cel. 2010; 18(4):510-25. [DOI:10.1016/j.devcel.2010.03.010] [PMID] [PMCID]
  20. Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020; 116(6):1113-24. [DOI:10.1093/cvr/cvz302] [PMID]
  21. Parikh M, Pierce GN. A Brief review on the biology and effects of cellular and circulating microRNAs on cardiac remodeling after infarction. Int J Mol Sci. 2021. 22(9):4995. [DOI:10.3390/ijms22094995] [PMID] [PMCID]
  22. Kanuri SH, Kreutz RP. Micro RNA sequencing for myocardial infarction screening. In: Faintuch J, Faintuch S, editors. Precision medicine foriInvestigators, practitioners and providers. United States: Academic Press; 2020:187-98. [DOI:10.1016/B978-0-12-819178-1.00018-6]
  23. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 in human skeletal muscle. J Appl Physiol. 2008; 106(3):929-34. [DOI:10.1152/japplphysiol.90880.2008[ [PMID]
  24. Klein J, Mellett L. High-intensity interval training: Rehab considerations for health and cardiovascular risk. CSM. 2015; 4(5):1-11.
  25. Ghorbani P, Reza Kordi M, Gaeini A, Nuri R, Karbalaeifar S. [Effect of high intensity interval training on miR-1, miR133-a gene expression in rats with myocardial Iinfarction (Persian)]. Sport Physiol. 2018; 10(37):87-98. [DOI:10.22089/SPJ.2018.1151]
  26. Li P, Li SY, Liu M, Ruan JW, Wang ZD, Xie WC. Value of the expression of miR-208, miR-494, miR-499 and miR-1303 in early diagnosis of acute myocardial infarction. Life Sci. 2019; 232:116547. [DOI:10.1016/j.lfs.2019.116547] [PMID]
  27. Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract. 2020; 160:108004. [DOI:10.1016/j.diabres.2020.108004] [PMID]
  28. Larina VN, Akhmatova FD, Arakelov SE, Mokhov AE, Doronina IM, Denisova NN. [Modern strategies for cardiac rehabilitation after myocardial infarction and percutaneous coronary intervention (Russian)]. Kardiologiia. 2020; 60(3):111-8. [DOI:10.18087/cardio.2020.3.n546][PMID]
  29. Bush M, Kucharska-Newton A, Simpson Jr RJ, Fang G, Stürmer T, Brookhart MA. Effect of initiating cardiac rehabilitation after myocardial infarction on subsequent hospitalization in older adults. J Cardiopulm Rehabil Prev. 2020; 40(2):87-93. [DOI:10.1097/HCR.0000000000000452] [PMID][PMCID]
  30. Sayari AA, Kashef M, Rajabi H, Adel MH. [The comparison effect of different cardiac rehabilitation protocols on renin-angiotensin enzymes system in patients after coronary artery bypass graft surgery (Persian)]. Jundishapur Sci Med J. 2016; 15(5):517-29. https://jsmj.ajums.ac.ir/article_46932.html?lang=en
  31. Kashef M, Barati A, Shahidi F, Khalili K. [The effect of alternative and continuous aerobic training on inflammatory index, Predictor of cardiovascular disease, and correlation of HS-CRP with body fat percentage in non athlete boys (Persian)]. Appl Res Sport Manag. 2012; 1(2):19-26. https://arsmb.journals.pnu.ac.ir/article_238.html?lang=en
  32. Cai M-X, Shi X-C, Chen T, Tan Z-N, Lin Q-Q, Du S-J, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life sci. 2016; 149:1-9. [DOI:10.1016/j.lfs.2016.02.055] [PMID]
  33. Chrysohoou C, Angelis A, Tsitsinakis G, Spetsioti S, Nasis I, Tsiachris D, et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int J Cardiol. 2015; 179:269-74. [DOI:10.1016/j.ijcard.2014.11.067] [PMID]
  34. Kollet DP, Marenco AB, Bellé NL, Barbosa E, Boll L, Eibel B, et al. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: A randomized pilot study. BMC Cardiovasc Disord. 2021; 21(1):101. [DOI:10.1186/s12872-021-01849-2] [PMID] [PMCID]
  35. Nowak A, Morawiec M, Gabrys T, Nowak Z, Szmatlan-Gabryś U, Salcman V. Effectiveness of resistance training with the use of a suspension system in patients after myocardial infarction. Int J Environ Res Public Health. 2020; 17(15):5419. [DOI:10.3390/ijerph17155419] [PMID] [PMCID]
  36. Lavie CJ, Milani RV. Cardiac rehabilitation and exercise training in secondary coronary heart disease prevention. Prog Cardiovasc Dis. 2011; 53(6):397- 403. [DOI:10.1016/j.pcad.2011.02.008] [PMID]
  37. Grochulska A, Glowinski S, Bryndal A. Cardiac resistance training with the use of a suspension system in patients after myocardial infarction: Preliminary research. J Clin Med. 2021; 10(11):2253. [DOI:10.3390/jcm10112253] [PMID] [PMCID]
  38. Li WG, Huang Z, Zhang XA. Exercise prescription in cardiac rehabilitation needs to be more accurate. Eur J Prev Cardiol. 2020:2047487320936021. [PMID]
  39. Dakei Z, Hemmat Far A, Azizbeigi K. [Effect of resistance and endurance training protocols on functional capacity and quality of life in male patients after myocardial infarction (Persian)]. Iran J Cardiovas Nurs. 2014; 3(1):26-33. https://journal.icns.org.ir/article-1-164-en.html
  40. Grans CF, Feriani DJ, Abssamra MEV, Rocha LY, Carrozzi NM, Mostarda C, et al. Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol. 2014; 103(1):60-8. [DOI:10.5935/abc.20140093] [PMID] [PMCID]
  41. Xu X, Zhao W, Lao S, Wilson BS, Erikson JM, Zhang JQ. Effects of exercise and L-arginine on ventricular remodeling and oxidative stress. Med Sci Sports Exerc. 2010; 42(2):346-54. [DOI:10.1249/MSS.0b013e3181b2e899] [PMID] [PMCID]
  42. Khalid Z, Farheen H, Tariq MI, Amjad I. Effectiveness of resistance interval training versus aerobic interval training on peak oxygen uptake in patients with myocardial infarction. J Pak Med Assoc. 2019; 69(8):1194-8. [PMID]
  43. Aamot IL, Karlsen T, Dalen H, Støylen A. Long-term exercise adherence after high-intensity interval training in cardiac rehabilitation: A randomized study. Physiother Res Int. 2016; 21(1):54-64. [DOI:10.1002/pri.1619] [PMID]
  44. Parastesh M, Yousefvand Z, Moghadasi S. [Comparison of the effect of moderateintensity interval training (MICT) and highintensity interval training (HIIT) on testicular structure, serum level of malondialdehyde and total antioxidant capacity of male diabetic rats (Persian)]. Daneshvar Med. 2019; 27(2):27-40. [DOI:10.22070/27.141.27]
  45. Hannan AL, Hing W, Simas V, Climstein M, Coombes JS, Jayasinghe R, et al. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open Access J Sports Med. 2018; 9:1-17. [DOI:10.2147/OAJSM.S150596[ [PMID] [PMCID]
  46. Kashef M, Mahmoudi K, Salehpour M, Moonikh K. [The effect of high-intensity interval training (HIIT) and quercetin supplementation on dimension and functional left ventricular adaptations in men with hypertension and CAD after PCI (Persian)]. Daneshvar Med. 2020; 27(5):35-48. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=716474
  47. Kashef A, Shahidi F, Sadeghi nikoo A. Acute effects of high intensity competition on macroelements and relationship with corrected QT interval. Türk Spor ve Egzersiz Dergisi. 2020; 22(3):458-63. https://dergipark.org.tr/en/download/article-file/818392
  48. Kashef A, Shahidi F, Sadeghi Nikoo A. [Cardiac troponin t response during high-intensity competition and its correlation with the corrected QT interval among the trained athletes (Persian)]. Sci J ilam univ Med Sci. 2020; 28(2). [DOI:10.29252/sjimu.28.2.1]
  49. Afousi AG, Gaeini A, Rakhshan K, Naderi N, Azar AD, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia/reperfusion injury. J Cell Commun Signal. 2019; 13(2):255-67. [DOI:10.1007/s12079-018-0481-3[ [PMID] [PMCID]
  50. Zokaei A, Ghahramani M. Effects of exercise training intensity on plasma levels of creatinine kinas after a myocardial infarction in male wistar rats. J of Clin Res Paramed Sci. 2021; 10(1). [DOI:10.5812/jcrps.111137]
  51. Choi HY, Han HJ, Choi JW, Jung HY, Joa KL. Superior effects of high-intensity interval training compared to conventional therapy on cardiovascular and psychological aspects in myocardial infarction. Ann Rehabil Med. 2018; 42(1):145-53. [DOI:10.5535/arm.2018.42.1.145] [PMID] [PMCID]
  52. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38(2):209-23. [DOI:10.1016/j.immuni.2013.02.003] [PMID]
  53. Shulga N, Pastorino JG. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci. 2012; 125(Pt 12):2995-3003. [DOI:10.1242/jcs.103093] [PMID] [PMCID]
  54. Zhang L, Feng Q, Wang T. Necrostatin-1 protects against Paraquat-induced cardiac contractile dysfunction via RIP1- RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol. 2018; 18(4):346-55 [DOI:10.1007/s12012-017-9441-z] [PMID]
  55. Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013; 45(8):1436-42. [DOI:10.1249/MSS.0b013e31828bbbd4][PMID]
  56. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fi tness on all-cause and disease-specific mortality: Advances since 2009 . Prog Cardiovasc Dis. 2017; 60(1):11-20 . [DOI:10.1016/j.pcad.2017.03.001] [PMID]
  57. Squires RW , Kaminsky LA , Porcari JP , Ruff JE , Savage PD , Williams MA. Progression of exercise training in early outpatient cardiac rehabilitation: An official statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J Cardiopulm Rehabil Prev. 2018 ; 38(3):139-46 . [DOI:10.1097/HCR.0000000000000337] [PMID]
  58. Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: Focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol. 2017; 313(1):H72-88. [DOI:10.1152/ajpheart.00470.2016] [PMID]
  59. Farias-Junior LF, Macêdo GA, Browne RA, Freire YA, Oliveira-Dantas FF, Schwade D, et al. Physiological and psychological responses during low-volume high-intensity interval training sessions with different work-recovery durations. J Sports Sci Med. 2019; 18(1):181-90. [PMCID]
  60. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012; 590(5):1077-84. [DOI:10.1113/jphysiol.2011.224725] [PMID] [PMCID]
  61. Wewege MA, Ahn D, Yu J, Liou K, Keech A. High-intensity interval training for patients with cardiovascular disease-is it safe? A systematic review. J Am Heart Assoc. 2018; 7(21):e009305. [DOI:10.1161/JAHA.118.009305] [PMID] [PMCID]

 
Type of Study: Review Article | Subject: Basic Sciences
Received: 2021/06/14 | Accepted: 2021/12/19

References
1. Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgraduate Medical Journal. 2019 ; 95(1122):210-6. [DOI:10.1136/postgradmedj-2019-136409] [PMID]
2. Zhang J, Huang C, Meng X, Xu K, Shi Y, Jiang L, Wan C. Effects of Different Exercise Interventions on Cardiac Function in Rats With Myocardial Infarction. Heart, Lung and Circulation. 2021; 30(5) :773-80. [DOI:10.1016/j.hlc.2020.08.004] [PMID]
3. Lujan HL, DiCarlo SE. Mimicking the endogenous current of injury improves post-infarct cardiac remodeling. Medical hypotheses.2013; 81(4) :521-3. [DOI:10.1016/j.mehy.2013.06.022] [PMID]
4. Zornoff LA, Paiva SA, Minicucci MF, Spadaro J. Experimental myocardium infarction in rats: analysis of the model. Arquivos brasileiros de cardiologia.2009; 93(4):434- 40. [DOI:10.1590/S0066-782X2009001000018] [PMID]
5. Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2014; (12) :Cd011273. [DOI:10.1002/14651858.CD011273.pub2] [PMID] [PMCID]
6. Abell, B., P. Glasziou, and T. Hoffmann, The Contribution of Individual Exercise Training Components to Clinical Outcomes in Randomised Controlled Trials of Cardiac Rehabilitation: A Systematic Review and Meta-regression. Sports Med Open. 2017; 3(1): 19. [DOI:10.1186/s40798-017-0086-z] [PMID] [PMCID]
7. Ghashghaei E, Sadeghi M, Yazdekhasti S. AReview of cardiacrehabilitation benefits on Physiological aspects in Patients with Cardiovascular Disease. J Research in RehabilitationSci 2012; 5(7): 706-15. [Persian]
8. Gharaat MA, Kashef M, Jameie B, Rajabi H. Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2019;24. [DOI:10.4103/jrms.JRMS_292_18] [PMID] [PMCID]
9. Moonikh K, Kashef M, Mahmoudi K, Salehpour M. The effect of high-intensity interval training (HIIT) with Quercetin supplementation on oxidative stress and level of concentric pathologic hypertrophy in cardiovascular patients after angioplast. Tehran University Medical Journal TUMS Publications. 2020;78(5):304-12.
10. Xie B, Yan X, Cai X, Li J. Effects of High-Intensity Interval Training on Aerobic Capacity in Cardiac Patients: A Systematic Review with Meta-Analysis. BioMed Research International. 2017; 54(6):105-110. [DOI:10.1155/2017/5420840] [PMID] [PMCID]
11. Zare Karizak S, Kashef M, Gaeini AA, Nejatian M. The comparison of two protocol of interval and continues aerobic training on level of concentric pathologic hypertrophy and cardiac function in patients after coronary artery bypass grafting surgery. Journal of Practical Studies of Biosciences in Sport. 2017;5(9):9-20.
12. Mitchell, B.L.; Lock, M.J.; Davison, K.; Parfitt, G.; Buckley, J.P.; Eston, R.G. What is the effect of aerobic exercise intensity on cardiorespiratory fitness in those undergoing cardiac rehabilitation? A systematic review with meta-analysis. Br. J. Sports Med. 2018; 53: 1341-1351. [DOI:10.1136/bjsports-2018-099153] [PMID]
13. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med (Auckland, NZ). 2015; 45(5) :679-92. [DOI:10.1007/s40279-015-0321-z] [PMID]
14. Trachsel LD, David LP, Gayda M, Henri C, Hayami D, Thorin‐Trescases N, Thorin E, Blain MA, Cossette M, Lalonge J, Juneau M. The impact of high‐intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clinical cardiology. 2019; 42(12):1222-31. [DOI:10.1002/clc.23277] [PMID] [PMCID]
15. Jayo-Montoya JA, Maldonado-Martín S, Aispuru GR, Gorostegi-Anduaga I, Gallardo-Lobo R, Matajira-Chia T, Villar-Zabala B, Blanco-Guzmán S. Low-Volume High-Intensity Aerobic Interval Training Is an Efficient Method to Improve Cardiorespiratory Fitness After Myocardial Infarction: PILOT STUDY FROM THE INTERFARCT PROJECT. Journal of cardiopulmonary rehabilitation and prevention. 2020;40(1):48-54. [DOI:10.1097/HCR.0000000000000453] [PMID]
16. Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol . 2014; 12: 135-42. [DOI:10.1038/nrcardio.2014.207] [PMID]
17. Chen Z, Li C, Lin K, Zhang Q, Chen Y, Rao L. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers?. Anatolian journal of cardiology. 2018;19(2):140. [DOI:10.14744/AnatolJCardiol.2017.8124] [PMCID]
18. Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R, Maiese A, Neri M, Santurro A, Scopetti M, Viola RV. miR‐1, miR‐499 and miR‐208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. Journal of cellular and molecular medicine. 2019; 23(9):6005-16. [DOI:10.1111/jcmm.14463] [PMID] [PMCID]
19. Liu NN, Olson E. Micro RNA regulatory networks in cardiovascular development. Dev Cel. 2010; (4): 510-25. [DOI:10.1016/j.devcel.2010.03.010] [PMID] [PMCID]
20. Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovascular research. 2020; 116(6):1113-24. [DOI:10.1093/cvr/cvz302] [PMID]
21. Parikh M, Pierce GN. A Brief Review on the Biology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction. International Journal of Molecular Sciences. 2021. 22(9):4995. [DOI:10.3390/ijms22094995] [PMID] [PMCID]
22. Kanuri SH, Kreutz RP. Micro RNA sequencing for myocardial infarction screening. InPrecision Medicine for Investigators, Practitioners and Providers. 2020; 187-198. [DOI:10.1016/B978-0-12-819178-1.00018-6]
23. Martin J, Gibala SL, McGee AP, Garnham KF, Howlett RJ, Snow RJ, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 in human skeletal muscle. J Appl Physiol. 2008;106(3):929-34. [DOI:10.1152/japplphysiol.90880.2008] [PMID]
24. Klein J, Mellett L. High-intensity interval training: Rehab considerations for health and cardiovascular risk. CSM. 2015;4(5):1-11.
25. Ghorbani P, Reza Kordi M, Gaeini A, Nuri R, Karbalaeifar S. Effect of High Intensity Interval Training on miR-1, miR133-a Gene Expression in Rats with Myocardial Infarction. Sport Physiology. 2018; 10(37): 87-98.
26. Li P, Li SY, Liu M, Ruan JW, Wang ZD, Xie WC. Value of the expression of miR-208, miR-494, miR-499 and miR-1303 in early diagnosis of acute myocardial infarction. Life sciences. 2019 ; 1:116547. [DOI:10.1016/j.lfs.2019.116547] [PMID]
27. Zhao X, Wang Y, Sun X. The Functions of microRNA-208 in the Heart. Diabetes Research and Clinical Practice. 2020; 3:108004. [DOI:10.1016/j.diabres.2020.108004] [PMID]
28. Larina VN, Akhmatova FD, Arakelov SE, Mokhov AE, Doronina IM, Denisova NN. Modern Strategies for Cardiac Rehabilitation After Myocardial Infarction and Percutaneous Coronary Intervention. Kardiologiia. 2020; 60(3):111-8. [DOI:10.18087/cardio.2020.3.n546] [PMID]
29. Bush M, Kucharska-Newton A, Simpson Jr RJ, Fang G, Stürmer T, Brookhart MA. Effect of Initiating Cardiac Rehabilitation After Myocardial Infarction on Subsequent Hospitalization in Older Adults. Journal of cardiopulmonary rehabilitation and prevention. 2020;40(2):87-93. [DOI:10.1097/HCR.0000000000000452] [PMID] [PMCID]
30. Sayari AA, Kashef M, Rajabi H, Adel MH. The Comparison Effect of Different Cardiac Rehabilitation Protocols on Renin-Angiotensin Enzymes System in Patients after Coronary Artery Bypass Graft Surgery. Jundishapur Scientific Medical Journal. 2016;15(5):517-29.
31. Kashef M, Barati A, Shahidi F, Khalili K. The effect of alternative and continuous aerobic training on inflammatory index, Predictor of cardiovascular disease, and correlation of HS-CRP with body fat percentage in non athlete boys. Applied Research in Sport Management. 2012;1(2):19-26.
32. Cai M-X, Shi X-C, Chen T, Tan Z-N, Lin Q-Q, Du S-J, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life sciences. 2016;149:1-9. [DOI:10.1016/j.lfs.2016.02.055] [PMID]
33. Chrysohoou C, Angelis A, Tsitsinakis G, Spetsioti S, Nasis I, Tsiachris D, et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int J Cardiol. 2015;179:269-74. [DOI:10.1016/j.ijcard.2014.11.067] [PMID]
34. Kollet DP, Marenco AB, Bellé NL, Barbosa E, Boll L, Eibel B, Waclawovsky G, Lehnen AM. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: a randomized pilot study. BMC cardiovascular disorders. 2021;21(1):1-2. [DOI:10.1186/s12872-021-01849-2] [PMID] [PMCID]
35. Nowak A, Morawiec M, Gabrys T, Nowak Z, Szmatlan-Gabryś U, Salcman V. Effectiveness of Resistance Training with the Use of a Suspension System in Patients after Myocardial Infarction. International Journal of Environmental Research and Public Health. 2020;17(15):5419. [DOI:10.3390/ijerph17155419] [PMID] [PMCID]
36. Lavie CJ, Milani RV. Cardiac rehabilitation and exercise training in secondary coronary heart disease prevention. Prog Cardiovasc Dis. 2011;53(6):397- 403. [DOI:10.1016/j.pcad.2011.02.008] [PMID]
37. Grochulska A, Glowinski S, Bryndal A. Cardiac Rehabilitation and Physical Performance in Patients after Myocardial Infarction: Preliminary Research. Journal of Clinical Medicine. 2021;10(11):2253. [DOI:10.3390/jcm10112253] [PMID] [PMCID]
38. Li WG, Huang Z, Zhang XA. Exercise prescription in cardiac rehabilitation needs to be more accurate. European Journal of Preventive Cardiology. 2020; 30:2047487320936021.
39. Dakei Z, Hemmat Far A. Effect of resistance and endurance training protocols on functional capacity and quality of life in male patients after myocardial infarction. Iran J Cardiovas Nurs. 2014;3(1):26-33.
40. Grans CF, Feriani DJ, Abssamra MEV, Rocha LY, Carrozzi NM, Mostarda C, et al. Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol. 2014;103:60-8. [DOI:10.5935/abc.20140093] [PMID] [PMCID]
41. Xu X, Zhao W, Lao S, Wilson BS, Erikson JM, Zhang JQ. Effects of exercise and L-arginine on ventricular remodeling and oxidative stress. MedSci Sports Exerc. 2010;42:346-54. [DOI:10.1249/MSS.0b013e3181b2e899] [PMID] [PMCID]
42. Khalid Z, Farheen H, Tariq MI, Amjad I. Effectiveness of resistance interval training versus aerobic interval training on peak oxygen uptake in patients with myocardial infarction. JPMA. The Journal of the Pakistan Medical Association. 2019 1;69(8):1194-8.
43. Moonikh K, Kashef M, Mahmoudi K, Salehpour M. The effect of high-intensity interval training (HIIT) with Quercetin supplementation on oxidative stress and level of concentric pathologic hypertrophy in cardiovascular patients after angioplast. Tehran University Medical Journal TUMS Publications. 2020;78(5):304-12.
44. Aamot IL, Karlsen T, Dalen H, Støylen A. Long‐term exercise adherence after high‐intensity interval training in cardiac rehabilitation: a randomized study. Physiotherapy Research International. 2016;21(1):54-64. [DOI:10.1002/pri.1619] [PMID]
45. Parastesh M, Yousefvand Z, Moghadasi S. Comparison of the effect of moderateintensity interval training (MICT) and highintensity interval training (HIIT) on testicular structure, serum level of malondialdehyde and total antioxidant capacity of male diabetic rats. Daneshvar Medicine. 2019; 27 (141):27-40.
46. Hannan AL, Hing W, Simas V, Climstein M, Coombes JS, Jayasinghe R, Byrnes J, Furness J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open Access Journal of Sports Medicine. 2018; 9: 1-17. [DOI:10.2147/OAJSM.S150596] [PMID] [PMCID]
47. Kashef M, Mahmoudi K, Salehpour M, Moonikh K. The effect of high-intensity interval training (HIIT) and quercetin supplementation on dimension and functional left ventricular adaptations in men with hypertension and CAD after PCI. Daneshvar Medicine. 2020; 26;27(5):35-48.
48. KASHEF A, SHAHİDİ F, SADEGHİNİKOO A. Acute Effects of High Intensity Competition on Macroelements and Relationship with Corrected QT Interval. Türk Spor ve Egzersiz Dergisi. 2020;22(3):458-63.
49. Kashef A, Shahidi F, Sadeghi Nikoo A. Cardiac Troponin T Response during High-Intensity Competition and its Correlation with the Corrected QT Interval among the Trained Athletes. scientific journal of ilam university of medical sciences. 2020;28(2):1-0. [DOI:10.29252/sjimu.28.2.1]
50. Afousi AG, Gaeini A, Rakhshan K, Naderi N, Azar AD, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia/reperfusion injury. Journal of cell communication and signaling. 2019;13(2):255-67. [DOI:10.1007/s12079-018-0481-3] [PMID] [PMCID]
51. Zokaei A, Ghahramani M. Effects of Exercise Training Intensity on Plasma Levels of Creatinine Kinas After a Myocardial Infarction in Male Wistar Rats. Journal of Clinical Research in Paramedical Sciences. 2021 (In Press). [DOI:10.5812/jcrps.111137]
52. Choi HY, Han HJ, Choi JW, Jung HY, Joa KL. Superior effects of high-intensity interval training compared to conventional therapy on cardiovascular and psychological aspects in myocardial infarction. Annals of rehabilitation medicine. 2018 Feb;42(1):145. [DOI:10.5535/arm.2018.42.1.145] [PMID] [PMCID]
53. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013 ; 38:209-223. [DOI:10.1016/j.immuni.2013.02.003] [PMID]
54. Shulga N, Pastorino JG. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci. 2012; 125:2995-3003. [DOI:10.1242/jcs.103093] [PMID] [PMCID]
55. Zhang L, Feng Q, Wang T. Necrostatin-1 protects against Paraquat-induced cardiac contractile dysfunction via RIP1- RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol.2018 ; 18(4):346-355 [DOI:10.1007/s12012-017-9441-z] [PMID]
56. Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013;45(8):1436-42. [DOI:10.1249/MSS.0b013e31828bbbd4] [PMID]
57. Harber MP , Kaminsky LA , Arena R , et al. Impact of cardiorespiratory fi tness on all-cause and disease-specifi c mortality: advances since 2009 . Prog Cardiovasc Dis. 2017; 60 ( 1 ): 11 - 20 . [DOI:10.1016/j.pcad.2017.03.001] [PMID]
58. Squires RW , Kaminsky LA , Porcari JP , Ruff JE , Savage PD , Williams MA . Progression of exercise training in early outpatient cardiac rehabilitation: an offi cial statement from the American Association of Cardiovascular and Pulmonary Rehabilitation . J Cardiopulm Rehabil Prev. 2018 ; 38 ( 3 ): 139 - 146 . [DOI:10.1097/HCR.0000000000000337] [PMID]
59. Adams V , Reich B , Uhlemann M , Niebauer J . Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium Am. J Physiol Heart Circ Physiol. 2017; 313 ( 1 ): H72 - H88 . [DOI:10.1152/ajpheart.00470.2016] [PMID]
60. Farias-Junior LF, Macêdo GA, Browne RA, Freire YA, Oliveira-Dantas FF, Schwade D, Mortatti AL, Santos TM, Costa EC. Physiological and psychological responses during low-volume high-intensity interval training sessions with different work-recovery durations. Journal of sports science & medicine. 2019;18(1):181.
61. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of physiology. 2012;590(5):1077-84. [DOI:10.1113/jphysiol.2011.224725] [PMID] [PMCID]
62. Klein J, Mellett L. High-intensity interval training: Rehab considerations for health and cardiovascular risk. Combined Sections Meeting (CSM). Boston, USA. Brigham and Women's Hospital; 2015.
63. Wewege MA, Ahn D, Yu J, Liou K, Keech A. High‐Intensity Interval Training for Patients With Cardiovascular Disease-Is It Safe? A Systematic Review. Journal of the American Heart Association. 2018; 7(21):93-98. [DOI:10.1161/JAHA.118.009305] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb