Volume 25, Issue 3 (August & September 2022)                   J Arak Uni Med Sci 2022, 25(3): 338-353 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaedmohammadi S, Bahrulolum H, Ahmadian G. A Systemic Review on Bacillus Subtilis Spore Structure and Its Applications in the Development of Mucosal Vaccines and Adjuvants. J Arak Uni Med Sci 2022; 25 (3) :338-353
URL: http://jams.arakmu.ac.ir/article-1-7181-en.html
1- Department of Cellular and Molecular Biology, Shiraz University, Estahban Higher Education Center, Estahban, Iran.
2- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
3- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. , ahmadian@nigeb.ac.ir
Full-Text [PDF 1651 kb]   (846 Downloads)     |   Abstract (HTML)  (1133 Views)
Full-Text:   (1458 Views)
Introduction
The surface display is a molecular technique, by which heterologous proteins are immobilized on the external surface of cells and has a wide range of applications, including the development of live vaccines, screening of peptide libraries, antibody production, whole-cell biocatalysts, and development of biosensors [1, 2]. Spore surface display technology, a method for anchoring functional proteins on the spore surface, is considered one of the most promising approaches to express heterologous proteins with high activity and stability and has several advantages. First, spores are resistant to harsh environmental conditions. Second, spores are made in the cytoplasm of bacterial cells; thus, the heterologous protein does not need to cross the cytoplasmic membrane to bind to the spore. Third, active molecular chaperones present in the cytoplasm of spore-producing bacteria can properly facilitate the proper secretion and expression of foreign heterologous proteins [11, 12]. The purpose of this study was to comprehensively review the use of Bacillus subtilis spores in the production of mucosal vaccines.

Materials and Methods
The present study was a systematic review, searching for articles using the keywords Bacillus subtilis spore, mucosal vaccine, and surface display, and their equivalent keywords in Persian, in Google Scholar, Scopus, and PubMed databases.

Results
The first case of genetic display on Bacillus subtilis spores was proposed in 2001 [1]. Since then, many heterologous proteins and enzymes have been successfully displayed on the surface of Bacillus subtilis spores, and most of them have used genetic methods to bind the target protein into one of the proteins of the spore coat or shell [25-30]. Although the genetic method has some advantages, such as no need to express and purify the target protein, the low level of expression or sometimes the absence of protein expression makes this method unsuitable for industrial applications. Another major problem in the genetic method is the release of living recombinant organisms in nature, which causes concern about the use of these genetically manipulated organisms [31]. To overcome these problems, a non-genetic approach has recently been proposed to use spores as a display system. The Gram-positive bacterium Bacillus subtilis has been widely studied as a prokaryotic system. This organism is not considered a pathogen and is classified as a probiotic for human and animal consumption. The mature Bacillus spore, once released from its mother cell, can survive for hundreds or even thousands of years in a metabolically inactive form [35]. On the other hand, the development of mucosal vaccines strongly relies on an efficient delivery system, and over the years, various approaches based on phages, bacteria, or artificial nanoparticles have been proposed to display and deliver antigens [36].

Discussion
The present study showed that mucosal spore-based vaccines have numerous advantages, such as helping mass vaccination by increasing ease and speed of delivery, reducing costs by eliminating purification steps, and flexible administration through mucosal and/or oral routes and thus providing vaccine delivery with needle-free and refrigeration-free systems [57]. Another unique feature of spore-based mucosal vaccines is that the spores have submicron-scale nanostructures that allow them to act as effective particulate adjuvants. Also, studies investigating the adjuvant properties of Bacillus subtilis spores show that strong adjuvant effects are observed when the spores are administered with protein antigens that are mixed or adsorbed on the surface of the spore coat. In addition, it has been found that the size of the spore particles is suitable for enhancing mucosal immunity. Thus, the flexibility of spores, together with a mucosal route of delivery, make spore vaccines a promising candidate, especially when mass production and large-scale vaccination are urgently needed [58].

Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding
This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions
Initial idea design: Gholamreza Ahmadian; Study and research: Samira Ghaedmohammadi, Howra Bahrulolum;  Author of the article: Samira Ghaedmohammadi, Howra Bahrulolum; Review: Gholamreza Ahmadian, Samira Ghaedmohammadi.

Conflicts of interest
The authors declare no conflict of intrest.

 
References
  1. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol. 2001; 183(21):6294-301. [DOI:10.1128/JB.183.21.6294-6301.2001] [PMID] [PMCID]
  2. Iwanicki A, Piatek I, Stasiłojć M, Grela A, Łega T, Obuchowski M, et al. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact. 2014; 13(1):30. [DOI:10.1186/1475-2859-13-30] [PMID] [PMCID]
  3. Charbit A, Boulain JC, Ryter A, Hofnung M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 1986; 5(11):3029-37. [PMID]
  4. Freudl R, MacIntyre S, Degen M, Henning U. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol. 1986; 188(3):491-4. [DOI:10.1016/0022-2836(86)90171-3] [PMID]
  5. Fasehee H, Rostami A, Ramezani F, Ahmadian G. Engineering E. Coli cell surface in order to develop a one-step purification method for recombinant proteins. AMB Express. 2018; 8(1). [DOI:10.1186/s13568-018-0638-8] [PMID] [PMCID]
  6. Vahed M, Ramezani F, Tafakori V, Mirbagheri VS, Najafi A, Ahmadian G. Molecular dynamics simulation and experimental study of the surface-display of SPA protein via Lpp-OmpA system for screening of IgG. AMB Express. 2020; 10(1):161. [DOI:10.1186/s13568-020-01097-1] [PMID] [PMCID]
  7. Tafakori V, Ahmadian G, Amoozegar MA. Surface display of bacterial metallothioneins and a chitin binding domain on escherichia coli increase cadmium adsorption and cell immobilization. Appl Biochem Biotechnol. 2012; 167(3):462-73. [DOI:10.1007/s12010-012-9684-x] [PMID]
  8. Smith GP. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705):1315-7. [DOI:10.1126/science.4001944] [PMID]
  9. Lee SY, Choi JH, Xu Z. Microbial cell-surface display. Trends Biotechnol. 2003; 21(1):45-52.  [DOI:10.1016/S0167-7799(02)00006-9] [PMID]
  10. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997; 15(6):553-7. [DOI:10.1038/nbt0697-553] [PMID]
  11. Guoyan Z, Yingfeng A, Zabed H, Qi G, Yang M, Jiao Y, et al. Bacillus subtilis spore surface display technology: A review of its development and applications. J Microbiol Biotechnol. 2019; 29(2):179-90.  [DOI:10.4014/jmb.1807.06066] [PMID]
  12. Lin P, Yuan H, Du J, Liu K, Liu H, Wang T. Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol. 2020; 104(6):2319-31. [DOI:10.1007/s00253-020-10348-x] [PMID] [PMCID]
  13. Zhang X, Al-Dossary A, Hussain M, Setlow P, Li J. Applications of bacillus subtilis spores in biotechnology and advanced materials. Appl Environ Microbiol. 2020; 86(17):e01096-20. [DOI:10.1128/AEM.01096-20.] [PMID] [PMCID]
  14. Oh Y, Kim JA, Kim CH, Choi SK, Pan JG. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency. BMC Vet Res. 2020; 16(1):259. [DOI:10.1186/s12917-020-02468-3] [PMID] [PMCID]
  15. Ferreira LC, Ferreira RC, Schumann W. Bacillus subtilis as a tool for vaccine development: From antigen factories to delivery vectors. An Acad Bras Cienc. 2005; 77(1):113-24. [DOI:10.1590/S0001-37652005000100009] [PMID]
  16. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi KA, Ricca E, et al. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res Microbiol. 2010; 161(9):757-64.[DOI:10.1016/j.resmic.2010.07.008] [PMID]
  17. Ahmadian G, Keshavarz M, Ahmadi Zeydabadi M. [Cloning and expression of Recombinant antifungal chitinase enzyme of Bacillus pumilus in Bacillus subtilis 168 (Persian)]. Koomesh. 2012; 13(2):151-8. [Link]
  18. Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic Biochem Physiol. 2017; 140:17-23. [DOI:10.1016/j.pestbp.2017.05.008] [PMID]
  19. Ghaedmohammadi S, Ahmadian G. The first report on the sortase-mediated display of bioactive protein A from Staphylococcus aureus (SpA) on the surface of the vegetative form of Bacillus subtilis. Microb Cell Fact. 2021; 20(1):212. [DOI:10.1186/s12934-021-01701-4] [PMID] [PMCID]
  20. Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep. 2013; 6(3):212-25. [DOI:10.1111/1758-2229.12130] [PMID] [PMCID]
  21. Fujita M, Losick R. Evidence that entry into sporulation in Bacillus subtilis is mediated by gradual activation of a master regulator spo0A. Genes Dev. 2005; 19(18):2236-44. [DOI:10.1101/gad.1335705] [PMID] [PMCID]
  22. McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat Rev Microbiol. 2013; 11(1):33-44. [DOI:10.1038/nrmicro2921] [PMID] [PMCID]
  23. Cowan AE, Koppel DE, Setlow B, Setlow P. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: Implications for spore dormancy. Proc Natl Acad Sci U S A. 2003; 100(7):4209-14. [DOI:10.1073/pnas.0636762100] [PMID] [PMCID]
  24. McKenney PT, Eichenberger P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol Microbiol. 2012; 83(2):245-60. [DOI:10.1111/j.1365-2958.2011.07936.x] [PMID] [PMCID]
  25. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol. 2001; 183(21):6294-301. [DOI:10.1128/JB.183.21.6294-6301.2001] [PMID] [PMCID]
  26. Isticato R, Di Mase DS, Mauriello EMF, De Felice M, Ricca E. Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. Biotechniques. 2007; 42(2):151-2, 154, 156. [DOI:10.2144/000112329] [PMID]
  27. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszyńska-Sularz G, et al. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact. 2010; 9:2. [DOI:10.1186/1475-2859-9-2] [PMID] [PMCID]
  28. Potot S, Serra CR, Henriques AO, Schyns G. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol. 2010; 76(17):5926-33. [DOI:10.1128/AEM.01103-10] [PMID] [PMCID]
  29. Naclerio G, Baccigalupi L, Zilhao R, De Felice M, Ricca E. Bacillus subtilis spore coat assembly requires cotH gene expression. J Bacteriol. 1996; 178(15):4375-80. [DOI:10.1128/jb.178.15.4375-4380.1996] [PMID] [PMCID]
  30. Hinc K, Iwanicki A, Obuchowski M. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb Cell Fact. 2013; 12:22. [DOI:10.1186/1475-2859-12-22] [PMID] [PMCID]
  31. Sirec T, Strazzulli A, Isticato R, De Felice M, Moracci M, Ricca E. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb Cell Fact. 2012; 11:100. [DOI:10.1186/1475-2859-11-100] [PMID] [PMCID]
  32. Yim SK, Jung HC, Yun CH, Pan JG. Functional expression in Bacillus subtilis of mammalian NADPH-cytochrome P450 oxidoreductase and its spore-display. Protein Expr Purif. 2009; 63(1):5-11. [DOI:10.1016/j.pep.2008.07.004] [PMID]
  33. Gashtasbi F, Ahmadian G, Noghabi KA. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Enzyme Microb Technol. 2014; 64-65:17-23. [DOI:10.1016/j.enzmictec.2014.05.006] [PMID]
  34. Ghaedmohammadi S, Rigi G, Zadmard R, Ricca E, Ahmadian G. Immobilization of Bioactive Protein A from Staphylococcus aureus (SpA) on the Surface of Bacillus subtilis Spores. Mol Biotechnol. 2015; 57(8):756-66. [DOI:10.1007/s12033-015-9868-z] [PMID]
  35. Duc le H, Hong HA, Fairweather N, Ricca E, Cutting SM. Bacterial spores as vaccine vehicles. Infect Immun. 2003; 71(5):2810-8. [DOI:10.1128/IAI.71.5.2810-2818.2003] [PMID] [PMCID]
  36. Ricca E, Baccigalupi L, Cangiano G, De Felice M, Isticato R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microbial Cell Factories. 2014; 13:115. [PMID] 
  37. Medaglini D, Ricci S, Maggi T, Rush CM, Manganelli R, Oggioni MR, et al. Recombinant Gram-positive bacteria as vehicles of vaccine antigens. Biotechnol Annu Rev. 1997; 3(C):297-312. [DOI:10.1016/S1387-2656(08)70038-3]
  38. Duc le H, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine. 2007; 25(2):346-55. [DOI:10.1016/j.vaccine.2006.07.037] [PMID]
  39. Barnes AG, Cerovic V, Hobson PS, Klavinskis LS. Bacillus subtilis spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol. 2007; 37(6):1538-47. [DOI:10.1002/eji.200636875] [PMID]
  40. Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun. 2008; 76(11):5257-65. [DOI:10.1128/IAI.00686-08] [PMID] [PMCID]
  41. Huang JM, La Ragione RM, Cooley WA, Todryk S, Cutting SM. Cytoplasmic delivery of antigens, by Bacillus subtilis enhances Th1 responses. Vaccine. 2008; 26(48):6043-52. [DOI:10.1016/j.vaccine.2008.09.024] [PMID]
  42. Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine. 2010; 28(4):1021-30. [DOI:10.1016/j.vaccine.2009.10.127] [PMID]
  43. Song M, Hong HA, Huang JM, Colenutt C, Khang DD, Nguyen TV, et al. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine. 2012; 30(22):3266-77.  [DOI:10.1016/j.vaccine.2012.03.016] [PMID]
  44. de Souza RD, Batista MT, Luiz WB, Cavalcante RC, Amorim JH, Bizerra RS, et al. Bacillus subtilis spores as vaccine adjuvants: Further insights into the mechanisms of action. PLoS One. 2014; 9(1):e87454. [DOI:10.1371/journal.pone.0087454] [PMID] [PMCID]
  45. Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, et al. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit Vectors. 2018; 11(1):156. [DOI:10.1186/s13071-018-2757-0] [PMID] [PMCID]
  46. Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, et al. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine. 2008; 26(15):1817-25. [DOI:10.1016/j.vaccine.2008.02.015] [PMID]
  47. Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, et al. Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett. 2014; 358(2):170-9.  [DOI:10.1111/1574-6968.12525] [PMID]
  48. Dai X, Liu M, Pan K, Yang J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One. 2018; 13(1):e0191627. [DOI:10.1371/journal.pone.0191627] [PMID] [PMCID]
  49. Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, et al. Bacillus subtilis spores expressing the VP28 antigen: A potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett. 2014; 358(2):202-8. [DOI:10.1111/1574-6968.12546] [PMID]
  50. CSung JC, Liu Y, Wu KC, Choi MC, Ma CH, Lin J, et al. Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate. Vaccines (Basel). 2021; 10(1):2. [PMID] [PMCID]
  51. Lee JE, Kye YC, Park SM, Shim BS, Yoo S, Hwang E, et al. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet Res. 2020; 51(1):68. [PMID] [PMCID]
  52. de Almeida ME, Alves KC, de Vasconcelos MG, Pinto TS, Glória JC, Chaves YO, et al. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model. Sci Rep. 2022;12(1):1531. [Link]
  53. Mauriello EM, Cangiano G, Maurano F, Saggese V, De Felice M, Rossi M, et al. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine. 2007; 25(5):788-93. [DOI:10.1016/j.vaccine.2006.09.013] [PMID]
  54. Cutting SM, Hong HA, Baccigalupi L, Ricca E. Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol. 2009; 28(6):487-505. [PMID]
  55. Mestecky J, Lamm ME, Ogra PL, Strober W, Bienenstock J, McGhee JR, et al. Mucosal immunology. Amsterdam: Elsevier; 2005. [Link]
  56. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines. 2021; 6(1):28. [PMID]
  57. Pan JG, Kim EJ, Yun CH. Bacillus spore display. Trends Biotechnol. 2012; 30(12):610-2. [DOI:10.1016/j.tibtech.2012.09.005] [PMID]
  58. Oh Y. Potential for mucosal delivery of bacillus subtilis spore vaccines displaying immunogenic protein on the surface. Arch Clin Microbiol .2021; 12(s2):1-4.[Link]
Type of Study: Review Article | Subject: Basic Sciences
Received: 2022/05/8 | Accepted: 2022/12/24

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb