Volume 28, Issue 3 (8-2025)                   J Arak Uni Med Sci 2025, 28(3): 211-218 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fatahian R, Karimi B, Hosseini S R, Forouhar Majd K, Hatempour A. An Investigation into the Histological Impacts of Thiamine on Renal Architecture in the Presence of Copper Oxide Nanoparticles. J Arak Uni Med Sci 2025; 28 (3) :211-218
URL: http://jams.arakmu.ac.ir/article-1-7750-en.html
1- Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran , fatahian_1349@gmail.com
2- Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
3- PhD Student in Veterinary Medicine, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
4- MSc of Basic Sciences Department of the Physiopharmacology Laboratory, Shahrekord, Iran
Abstract:   (447 Views)
Introduction: The study discusses the impact of thiamine on the kidney tissue of rats that have been exposed to copper oxide nanoparticles. The research examined how thiamine correlates with the level of kidney damage caused by the intrusion of nanoparticles.
Methods: In this experimental study, forty male Wistar rats were randomly divided into four groups (10 rats per group). Two groups of rats were used as the control group (I) and the thiamine group (II). Rats of group III were administered an intraperitoneal injection of 25 mg/kg body weight of copper oxide nanoparticles for 14 days. Rats in group IV received the same dose of copper oxide nanoparticles along with thiamine (30 mg/kg body weight).
Results: The histopathological findings showed disruption of the arrangement of convoluted tubules and their disintegration and widening of the tubular lumen, cell separation and tubular necrosis in the majority of the renal tubules in-group III. In the group treated with copper oxide nanoparticles along with thiamine (IV), the pathological changes were slight and the majority of the tubules had retained normal structure. Statistically significant differences in the levels of some serum biochemical parameters (catalase, superoxide dismutase, TBARS, and TAC) were observed in groups III and IV on day 14 when compared to the control group.
Conclusions: This study demonstrated that thiamine can be utilized as an effective compound to reduce the damage caused by nanoparticles to kidney tissue and may lead to significant improvement in the health of kidney tissue in individuals suffering from damage caused by these nanoparticles.
Full-Text [PDF 884 kb]   (118 Downloads)    
Type of Study: Original Atricle | Subject: General
Received: 2024/07/3 | Accepted: 2025/07/13

References
1. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9-10):1521-32. pmid: 23019091 doi :10.1002/smll.201201390
2. Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater. 2015;14(6):567-76. pmid: 25990912 doi: 10.1038/nmat4281
3. Uclés A, López SH, Hernando MD, Rosal R, Ferrer C, Fernández-Alba AR. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis. Talanta. 2015;144:51-61. pmid: 26452791 doi: 10.1016/j.talanta.2015.05.055
4. Yang L, Yang L, Ding L, Deng F, Luo XB, Luo SL. Principles for the application of nanomaterials in environmental pollution control and resource reutilization. In: Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier; 2019. p. 1-23. doi: 10.1016/B978-0-12-814837-2.00001-9
5. Lei R, Yang B, Wu C, Liao M, Ding R, Wang Q. Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol Res. 2015;4:351-64. doi: 10.1039/c4tx00156g
6. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO₂, ZnO and Al₂O₃ nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014;37(3):336-47. pmid: 24344737 doi: 10.3109/01480545.2013.866134
7. Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett. 2009;188(2):112-8. pmid: 19446243 doi: 10.1016/j.toxlet.2009.03.014
8. Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol Trace Elem Res. 2018;184(2):350-7. pmid: 29064010 doi: 10.1007/s12011-017-1170-4
9. Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO₂ to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009;407(4):1461-8. pmid: 19038417 doi: 10.1016/j.scitotenv.2008.10.053
10. Wang H, Huang Y, Tan Z, Hu X. Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta. 2004;526(1):13-7. doi: 10.1016/j.aca.2004.08.060
11. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res Rev Mutat Res. 2009;681(2-3):241-58. pmid: 19041420 doi: 10.1016/j.mrrev.2008.10.002
12. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, et al. Role of oxidative damage in toxicity of particulates. Free Radic Res. 2010;44(1):1-46. pmid: 19886744 doi: 10.3109/10715760903300691
13. Peeri M, Haghigh MM, Azarbayjani MA, Atashak S, Behrouzi G. Effect of aqueous extract of saffron and aerobic training on hepatic non enzymatic antioxidant levels in streptozotocin-diabetic rats [in Persian]. Journal of Sports Biosciences. 2012;2(7):5-16.
14. Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2020;14(1):1-13. pmid: 31935671 doi: 10.1049/iet-nbt.2019.0176
15. Fatahian Dehkordi RA, Heidarnejad MS, Mohebbi A, Mosayebi M. The histopathological and biochemical effects of thiamine on mice liver exposure by the copper oxide and copper oxide nanoparticles [in Persian]. J Anim Res (Iran J Biol). 2017;30(2):214-24.
16. Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Kireyeva EP, et al. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci. 2014;15(7):12379-406. pmid: 25026171 doi: 10.3390/ijms150712379
17. Yaqub A, Anjum KM, Munir A, Mukhtar H, Khan WA. Evaluation of acute toxicity and effects of sub-acute concentrations of copper oxide nanoparticles (CuO-NPs) on hematology, selected enzymes and histopathology of liver and kidney in Mus musculus. Indian J Anim Res. 2018;52(1):92-8. doi: 10.18805/ijar.v0iof.8489
18. Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Boricic N, Wallace D. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019;16(2):274. pmid: 30669347 doi: 10.3390/ijerph16020274
19. Elkhateeb SA, Ibrahim TR, El-Shal AS, Abdel Hamid OI. Ameliorative role of curcumin on copper oxide nanoparticles-mediated renal toxicity in rats: An investigation of molecular mechanisms. J Biochem Mol Toxicol. 2020;34(4):e22593. doi: 10.1002/jbt.22593
20. Elhussainy E, El-Shourbagy S. Protective effect of multivitamin complex on copper oxide nanoparticles (nanoCuO) induced toxicity in rats. Bull Egypt Soc Physiol Sci. 2014;34(2):404-18. doi: 10.21608/besps.2014.34831
21. El Bialy BE, Hamouda RA, Abd Eldaim MA, El Ballal SS, Heikal HS, Khalifa HK, Hozzein WN. Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. Int J Nanomedicine. 2020;15:3827-42. pmid: 32581533 doi: 10.2147/IJN.S241922
22. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53(8):1506-16. pmid: 20369223 doi: 10.1007/s00125-010-1722-z
23. Onishchenko GG, Tutel'ian VA. The concept of toxicological studies, estimated risk methodology, methods of identification and quantification of nanomaterials [in Russian]. Vopr Pitan. 2007;76(6):4-8. pmid: 18219933
24. Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano-copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci. 2022;292:120296. pmid: 35045342 doi: 10.1016/j.lfs.2021.120296
25. Gray A, McMillan D, Wilson C, Williamson C, O’Reilly DSJ, Talwar D. The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty. Clin Nutr. 2004;23(5):1080-3. pmid: 15380899 doi: 10.1016/j.clnu.2004.01.013
26. Butterworth RF. Effects of thiamine deficiency on brain metabolism: implications for the pathogenesis of the Wernicke-Korsakoff syndrome. Alcohol Alcohol. 1989;24(3):271-9. pmid: 2675860 doi: 10.1093/oxfordjournals.alcalc.a044913

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb