Volume 27, Issue 4 (10-2024)                   J Arak Uni Med Sci 2024, 27(4): 186-193 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gharaat M A. Effect of Aerobic and Interval Training on Insulin-Like Growth Factor-1, GATA4 Gene, and Cardiac Structure. J Arak Uni Med Sci 2024; 27 (4) :186-193
URL: http://jams.arakmu.ac.ir/article-1-7765-en.html
Department of Physical Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran , mohammadaligharaat@gmail.com
Abstract:   (365 Views)
Introduction: Physical activity causes cardiac hypertrophy by a non-pathological change in cardiac structure, called physiological hypertrophy. Several molecular changes are involved in this process. Insulin-like growth hormone-1 (IGF-1) is an important hormone involved in hypertrophy of cardiomyocytes. Also, the role of GATA4 as a possible gene involved in cardiac hypertrophy is controversial. Therefore, the present study was conducted to find the effect of aerobic and interval training on IGF-1, GATA4 gene, and cardiac tissue.
Methods: Eighteen male Wistar rats (243.72 ± 23.41 g) were randomly divided into control, aerobic, and interval training groups (n = 6). The aerobic group trained for 8 weeks/4 days a week/38 minutes/ 65% of maximum oxygen consumption (VO2 max). The intermittent group trained 8 weeks/4 days a week/5 set/4 minutes/85-90% of VO2 max running with 2 minutes rest between the sets. The weight of the heart and left ventricle, IGF-1 concentration, and GATA4 gene expression were measured 48 hours after the training. The evaluation was conducted with a one-way analysis of variance and Tukey's post hoc test at a significance level of 0.05.
Results: The weight of the heart and left ventricle increased significantly in trained groups. IGF-1 and GATA4 gene expression increased in both the training groups than the control group.
Conclusions: Aerobic and Interval training increases IGF-1, GATA4 gene, left ventricle, and heart weight. Considering the shorter time interval training takes, it seems that interval training is more beneficial than aerobic training.
Full-Text [PDF 1198 kb]   (229 Downloads)    
Type of Study: Original Atricle | Subject: General
Received: 2024/07/24 | Accepted: 2024/09/1

References
1. Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res. 2015;116(1):70–9. pmid: 25305307 doi: 10.1161/CIRCRESAHA.116.304472
2. McMullen J, Genings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007;34(4):255-62.
3. Gharaat MA, Kashef M, Jameie B, Rajabi H. Effect of endurance and high intensity interval swimming training on cardiac hypertrophy of male rats [in Persian]. J Shahid Sadoughi Uni Med Sci. 2018;26(4):306-18.
4. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol & Therapeut 2010;128(1):191–227. doi: 10.1016/j.pharmthera.2010.04.005
5. Xiang K, Qin Z, Zhang H, Liu X. Energy metabolism in exercise-induced physiologic cardiac hypertrophy. Front Pharmacol. 2020;11:1133. pmid: 32848751 doi: 10.3389/fphar.2020.01133
6. Gharaat MA, Kashef M, Jameie B, Rajabi H. Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training. J Res Med Sci. 2019;24:32. pmid: 31143233 doi: 10.4103/jrms.JRMS_292_18
7. Tucker WJ, Beaudry RI, Liang Y, Clark AM, Tomczak CR, Nelson MD, et al. Meta-analysis of exercise training on left ventricular ejection fraction in heart failure with reduced ejection fraction: a 10-year update. Prog Cardiovasc Dis 2019;62(2):163-71. pmid: 30227187 doi: 10.1016/j.pcad.2018.08.006
8. Gharaat MA, Kashef M, Jameie B, Rajabi H. Effect of endurance and high intensity interval swimming training on cardiac structure and Hand2 expression of rats [in Persian]. J Shahid Sadoughi Uni Med Sci. 2017;25(9):748-58.
9. Holloway TM, Bloemberg D, Da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High Intensity Interval and Endurance Training Have Opposing Effects on Markers of Heart Failure and Cardiac Remodeling in Hypertensive Rats. PLoS One. 2015;10(3): e0121138. pmid: 25803693 doi: 10.1371/journal.pone.0121138
10. Fernandes T, Soci U, Oliveira E. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res. 2011;44:836-47. PMID: 21881810 DOI: 10.1590/s0100-879x2011007500112
11. Sheykhlouvand M, Gharaat MA. Optimal homeostatic stress to maximize the homogeneity of adaptations to interval interventions in soccer players. Front Physiol. 2024;15:1377552. pmid: 38655030 doi: 10.3389/fphys.2024.1377552
12. Nasrollahi H, Gaeini A, Biglari S, Ghardashi A. Changes of insulin-like growth factor I gene expression in gastrocnemius muscle of male Wistar rats after a period of high-intensity interval training [in Persian]. Daneshvar Med. 25(5):31-8.
13. Roelen C, De Vries W, Koppeschaar H, Vervoorn C, Thijssen J, Blankenstein M. Plasma insulin-like growth factor-I and high affinity growth hormone-binding protein levels increase after two weeks of strenuous physical training. Int J Sports Med 1997;18(04):238-41. pmid: 9231837 doi: 10.1055/s-2007-972626
14. Chicharro JL, López-Calderon A, Hoyos J, Martín-Velasco AI, Villa G, Villanua M, et al. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. Br J Sports Med. 2001;35(5):303-7. pmid: 11579061 doi: 10.1136/bjsm.35.5.303
15. Ock S, Ham W, Kang CW, Kang H, Lee WS, Kim J. IGF-1 protects against angiotensin II-induced cardiac fibrosis by targeting αSMA. Cell Death Dis. 2021;12(7):688. pmid: 34244467 doi: 10.1038/s41419-021-03965-5
16. Rosendal L, Langberg H, Flyvbjerg A, Frystyk J, Ørskov H, Kjær M. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J Appl Physiol (1985). 2002;93(5):1669-75. pmid: 12381752 doi: 10.1152/japplphysiol.00145.2002
17. Fathi M, Gharakanlou R, Abroun S, Mokhtari-Dizaji M, Rezaei R. Considerations in the evaluation of cardiac changes following endurance training in male Wistar rats [in Persian]. Yafteh 2013;15(5):112-23.
18. Broderick TL, Parrott CR, Wang D, Jankowski M, Gutkowska J. Expression of cardiac GATA4 and downstream genes after exercise training in the db/db mouse. Pathophysiology. 2012;19(3):193-203. pmid: 22809789 doi: 10.1016/j.pathophys.2012.06.001
19. Naderi N, Hemmatinafar M, Gaeini AA, Bahramian A,
20. Ghardashi-Afousi A, Kordi MR, et al. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci. 2019;221:319-26. pmid: 30802510 doi: 10.1016/j.lfs.2019.02.045
21. Day YS, Cserjesi P, Markham BE, Molkentin J. The Transcription Factors GATA4 and dHAND Physically Interact to Synergistically Activate Cardiac Gene Expression through a p300-dependent Mechanism. J Biol Chem. 2002;277(27):24390-8. pmid: 11994297 doi: 10.1074/jbc.M202490200
22. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14(6):753-60. pmid: 18043295 doi: 10.1097/HJR.0b013e3281eacef1
23. Gharaat MA, Choobdari HR, Khajavi N, Shafabakhsh SR. Effect of swimming training on cardiac morphological factors, Apelin and Insulin Like Growth Factor-1 in male wistar rats [in Persian]. J Shahid Sadoughi Uni Med Sci. 2023;31(8):6944-54. doi: 10.18502/ssu.v31i8.13945
24. Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrão CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res. 2004;37:1909-17. pmid: 15558199 doi: 10.1590/s0100-879x2004001200018
25. Da Silva JND, Fernandes T, Soci UPR, Monteiro AWA, Phillips MI, De Oliveira EM. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc. 2012;44(8):1453-62. pmid: 22330028 doi: 10.1249/MSS.0b013e31824e8a36
26. Kemi OJ, Haram PM, Loennechen JP. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 2005;67(1):161-7. pmid: 15949480 doi: 10.1016/j.cardiores.2005.03.010
27. Haykowsky MJ, Dressendorfer R, Taylor D, Mandic S, Humen D. Resistance training and cardiac hypertrophy. Sports Med. 2002;32(13):837-49. pmid: 12392444 doi: 10.2165/00007256-200232130-00003
28. Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36(2):58-63. pmid: 18362686 doi: 10.1097/JES.0b013e318168ec1f
29. Weeks KL, Bernardo BC, Ooi JY, Patterson NL, McMullen JR. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Exercise for Cardiovascular Disease Prevention and Treatment. Adv Exp Med Biol. 2017;1000:187-210. pmid: 29098623 doi: 10.1007/978-981-10-4304-8_12
30. Nishida Y, Matsubara T, Tobina T, Shindo M, Tokuyama K, Tanaka K, et al. Effect of low-intensity aerobic exercise on insulin-like growth factor-I and insulin-like growth factor-binding proteins in healthy men. Int J Endocrinol. 2010; 2010:452820. pmid: 20885914 doi: 10.1155/2010/452820
31. Gharaat MA, MehriAlvar Y. Effect of resistance training modalities on angiogenic indices in sedentary male students [in Persian]. Tehran U Med Sci J. 2023;81(6):441-9.
32. Sheykhlouvand M, Khalili E, Agha-Alinejad H, Gharaat MA. Hormonal and physiological adaptations to high-intensity interval training in professional male canoe polo athletes. J Strength Cond Res. 2016;30(3):859–66. pmid: 26349044 doi: 10.1519/JSC.0000000000001161

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb