Volume 23, Issue 6 (February & March 2020)                   J Arak Uni Med Sci 2020, 23(6): 786-805 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei M, Rabbani Khorasgani M, Aliramaei M R. Recombinant Lactococcus, a New Approach to Oral Vaccines. J Arak Uni Med Sci 2020; 23 (6) :786-805
URL: http://jams.arakmu.ac.ir/article-1-6255-en.html
1- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, Isfahan, Iran.
2- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, Isfahan, Iran. , m.rabbani@biol.ui.ac.ir
Full-Text [PDF 9876 kb]   (1533 Downloads)     |   Abstract (HTML)  (2221 Views)
Full-Text:   (3021 Views)
1. Introduction
accines used to prevent and control pathogens include DNA vaccines, subunit vaccines, attenuated live vaccines, as well as vector (carrier) vaccines. Current strategies have focused on developing novel vaccines against infectious diseases; they are based on identifying the immunogenic antigens capable of eliciting the necessary immune response to fight pathogens and their delivery system [7]. The present review study aimed to introduce non-pathogenic, non-invasive, and safe Lactococcus lactis bacteria. Furthermore, we evaluated the advantages and limitations of using recombinant Lactococcus lactis-based vaccines; review studies on oral vaccines based on them; vaccine promotion methods and future prospects, as a promising strategy for vaccine production, and preventing some infectious diseases.
2. Materials and Methods
In this review article, 62 articles related to Lactococcus and its wide applications concerning oral vaccine production were collected from 1998 to 2020. Accordingly, we searched the following databases: Scopus, PubMed, and Google Scholar databases. The keywords used in this study included ”Immunity, Lactococcus lactis, and Mucosal, Vaccine” (Figures 1, 2, 3, 4 & Table 1). 


3. Results
Lactococcus lactis is Generally Recognized As Safe (GRAS) and can be widely used in the food industry. Live recombinant Lactococcus lactis, as a biopharmaceutical, is administered orally as a live vaccine expressing viral and bacterial antigens.
4. Discussion and Conclusion 
Vectors based on recombinant lactococci can be desirable alternatives to attenuated strain vaccines. Furthermore, they can be considered as a food-grade and safe host for producing human products, compared to other manufacturing systems. It also has a high potential for vaccine delivery, especially through mucosal methods for the prevention or treatment of some diseases. Additionally, Lactococcus lactis is among the most suitable cellular plants for the expression and secretion of heterologous proteins. A reason for the widespread use of this bacterium is the rapid secretion of protein in this bacterium and the feasible purification of the protein. Moreover, Lactococcus lactis is an efficient host for producing recombinant proteins for therapeutic purposes [34]. Lactococci, for several main reasons, can induce mucosal immunity (secretory IgA secretion) and systemic immunity, resist acidic gastric conditions, bind to the intestinal epithelium, and enhance the immune response as an adjuvant. Besides, the poor immune response against them, less immunity tolerance to them, also less adverse effects make it an appropriate option of live vectors in immunotherapy and immunoprophylaxis. With these characteristics, LAB-based vectors are a suitable alternative to vaccines for the attenuated strains of pathogenic microorganisms, liposomes, and microparticles [1]. Recombinant lactococcus, as a food-grade safe host for producing the desired product, food, or other human consumption is safer than other production systems. However, using such genetically modified microorganisms requires extensive clinical and controlled studies and the proper evaluation of the performance and safety of such drugs, especially for humans.

Ethical Considerations
Compliance with ethical guidelines

This article was approved by the Ethical Research Committee of Arak University of Medical Sciences with the number 1396/99.

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors. 

Authors' contributions
All authors met the standard criteria for writing based on the recommendations of the International Committee of Publishers of Medical Journals (ICMJE).

Conflicts of interest
The authors stated no conflicts of interest.

  1. Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expr Purif. 2011; 79(2):165-75. [DOI:10.1016/j.pep.2011.06.005] [PMID]
  2. Chen S, Zhang R, Duan G, Shi J. Food-grade expression of Helicobacter pylori ureB subunit in Lactococcus lactis and its immunoreactivity. Curr Microbiol. 2011; 62(6):1726-31. [DOI:10.1007/s00284-011-9920-6] [PMID]
  3. Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Hadfield TL, Hoover DL. Oral vaccination with Brucella melitensis WR201 protects mice against intranasal challenge with virulent Brucella melitensis 16M. Infect Immun. 2004; 72(7):4031-9. [DOI:10.1128/IAI.72.7.4031-4039.2004] [PMID] [PMCID]
  4. Alton GG. Control of Brucella melitensis infection in sheep and goats-a review. Trop Anim Health Prod. 1987; 19(2):65-74. [DOI:10.1007/BF02297320] [PMID]
  5. Minas A, Minas M, Stournara A, Tselepidis S. The “effects” of Rev-1 vaccination of sheep and goats on human brucellosis in Greece. Prev Vet Med. 2004; 64(1):41-7. [DOI:10.1016/j.prevetmed.2004.03.007] [PMID]
  6. Wallach J, Ferrero M, Victoria Delpino M, Fossati C, Baldi P. Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina. Clin Microbiol Infect. 2008; 14(8):805-7. [DOI:10.1111/j.1469-0691.2008.02029.x] [PMID]
  7. Miyoshi A, Bermúdez-Humarán LG, Ribeiro LA, Le Loir Y, Oliveira SC, Langella P, et al. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact. 2006; 5(1):14. [DOI:10.1186/1475-2859-5-14] [PMID] [PMCID]
  8. Song AA, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: From food to factory. Microb Cell Fact. 2017; 16(1):55. [DOI:10.1186/s12934-017-0669-x] [PMID] [PMCID]
  9. Khorasgani MR, Shafiei R. Traditional Yogurt as a Source of Lactobacilli and Other Lactic Acid Bacteria in Iran. In: Nagendra PS, editoe. Yogurt in health and disease prevention. Cambridge, Ma: Academic Press; 2017. pp. 285-94. [DOI:10.1016/B978-0-12-805134-4.00016-X]
  10. D’Silva I. Recombinant technology and probiotics. Int J Eng Technol. 2011; 3(4):288-93. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
  11. Margolles A, Moreno JA, Ruiz L, Marelli B, Magni C, de Los Reyes-Gavilán CG, et al. Production of human growth hormone by Lactococcus lactis. J Biosci Bioeng. 2010; 109(4):322-4. [DOI:10.1016/j.jbiosc.2009.10.006] [PMID]
  12. Zhang XJ, Duan G, Zhang R, Fan Q. Optimized expression of Helicobacter pylori ureB gene in the Lactococcus lactis Nisin-Controlled Gene Expression (NICE) system and experimental study of its immunoreactivity. Curr Microbiol. 2009; 58(4):308-14. [DOI:10.1007/s00284-008-9349-8] [PMID]
  13. Langella P, Le Loir Y. Heterologous protein secretion in Lactococcus lactis: A novel antigen delivery system. Braz J Med Biol Res. 1999; 32(2). 191-8. [DOI:10.1590/S0100-879X1999000200007] [PMID]
  14. Papagianni M. Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact. 2012; 11(1):50. [DOI:10.1186/1475-2859-11-50] [PMID] [PMCID]
  15. Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, et al. Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res. 2003; 2(1):102-11. https://www.researchgate.net/profile/Yves-Le-Loir-2/publication/224901319_Heterologous_protein_production_and_delivery_systems_for_Lactococcus_lactis/links/0fcfd509905bc589f5000000/Heterologous-protein-production-and-delivery-systems-for-Lactococcus-lactis.pdf
  16. Mozzi F, Raya R, Vignolo GM, Love JC. Biotechnology of lactic acid bacteria: Novel Applications. New Jersey: Wiley Online Library; 2015. [DOI:10.1002/9781118868386]
  17. Hu CX, Xu ZR, Li WF, Dong N, Lu P, Fu LL. Secretory expression of K88 (F4) fimbrial adhesin FaeG by recombinant Lactococcus lactis for oral vaccination and its protective immune response in mice. Biotechnol Lett. 2009; 31(7):991-7. [DOI:10.1007/s10529-009-9966-8] [PMID]
  18. Desmond C, Fitzgerald GF, Stanton C, Ross RP. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol. 2004; 70(10):5929-36. [DOI:10.1128/AEM.70.10.5929-5936.2004] [PMID] [PMCID]
  19. Sasan H. Cloning of EprA1 gene from Aeromonas hydrophila in Lactococcus lactis. Iran J Biotechnol. 2010; 8(3):192-7. http://www.ijbiotech.com/article_7120_464477b340289dbffcc78f80c3a5c492.pdf
  20. Komijani M, Bouzari M, Rahimi F. Detection of TEM, SHV and CTX-M antibiotic resistance genes in escherichia coli isolates from infected wounds. Med Lab J. 2017; 11(2):30-5. http://mlj.goums.ac.ir/article-1-972-en.html
  21. Komijani M, Shahin K, Barazandeh M, Sajadi M. Prevalence of extended-spectrum β-lactamases genes in clinical isolates of Pseudomonas aeruginosa. Med Lab J. 2018; 12(5):34-41. [DOI:10.29252/mlj.12.5.34]
  22. Shahin K, Bouzari M, Komijani M, Wang R. A new phage cocktail against multidrug, ESBL-Producer isolates of Shigella sonnei and Shigella flexneri with highly efficient bacteriolytic activity. Microb Drug Resist. 2020; 26 (7):831-41. [DOI:10.1089/mdr.2019.0235] [PMID]
  23. Heyman M, Ménard S. Probiotic microorganisms: How they affect intestinal pathophysiology. Cell Mol Life Sci. 2002; 59(7):1151-65. [DOI:10.1007/s00018-002-8494-7] [PMID]
  24. Reese KA, Lupfer C, Johnson RC, Mitev GM, Mullen VM, Geller BL, et al. A novel lactococcal vaccine expressing a peptide from the M2 antigen of H5N2 highly pathogenic avian influenza A virus prolongs survival of vaccinated chickens. Vet Med Int. 2013; 2013:316926. [DOI:10.1155/2013/316926] [PMID] [PMCID]
  25. Bermúdez-Humarán LG, Cortes-Perez NG, Lefèvre F, Guimarães V, Rabot S, Alcocer-Gonzalez JM, et al. A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol. 2005; 175(11):7297-302. [DOI:10.4049/jimmunol.175.11.7297] [PMID]
  26. Pei H, Liu J, Cheng Y, Sun C, Wang C, Lu Y, et al. Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination. Appl Microbiol Biotechnol. 2005; 68(2):220-7. [DOI:10.1007/s00253-004-1869-y] [PMID] [PMCID]
  27. Bahey-El-Din M, Gahan CG, Griffin BT. Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther. 2010; 10(1):34-45. [DOI:10.2174/156652310790945557] [PMID]
  28. de Azevedo MS, Innocentin S, Dorella FA, Rocha CS, Mariat D, Pontes DS, et al. Immunotherapy of allergic diseases using probiotics or recombinant probiotics. J Appl Microbiol. 2013; 115(2):319-33. [DOI:10.1111/jam.12174] [PMID]
  29. Zuercher AW, Weiss M, Holvoet S, Moser M, Moussu H, van Overtvelt L, et al. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum. Clin Dev Immunol. 2012; 2012:485750. [DOI:10.1155/2012/485750] [PMID] [PMCID]
  30. Steidler L, Rottiers P, Coulie B. Actobiotics™ as a novel method for cytokine delivery. Ann N Y Acad Sci. 2009; 1182(1):135-45. [DOI:10.1111/j.1749-6632.2009.05067.x] [PMID]
  31. Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, et al. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog. 2014; 6:33. [DOI:10.1186/1757-4749-6-33] [PMID] [PMCID]
  32. Liong MT. Probiotics: A critical review of their potential role as antihypertensives, immune modulators, hypocholesterolemics, and perimenopausal treatments. Nutr Rev. 2007; 65(7):316-28. [DOI:10.1111/j.1753-4887.2007.tb00309.x] [PMID]
  33. Bahey-El-Din M, Gahan CG. Lactococcus lactis -based vaccines: Current status and future perspectives. Hum Vaccin. 2011; 7(1):106-9. [DOI:10.4161/hv.7.1.13631] [PMID]
  34. D’Souza R, Pandeya DR, Hong S-T. Review: Lactococcus lactis: An efficient Gram positive cell factory for the production and secretion of recombinant protein. Biomed Res. 2012; 23(1):1-7. https://www.biomedres.info/biomedical-research/review-lactococcus-lactis-an-efficient-gram-positive-cell-factory-for-the-production-and-secretion-of-recombinant-protein.html
  35. JJørgensen CM, Vrang A, Madsen SM. Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol Lett. 2014; 351(2):170-8. [DOI:10.1111/1574-6968.12351] [PMID]
  36. Mohseni AH, Razavilar V, Keyvani H, Razavi MR, Khavari-Nejad RA. Oral immunization with recombinant Lactococcus lactis NZ9000 expressing human papillomavirus type 16 E7 antigen and evaluation of its immune effects in female C57BL/6 mice. J Med Virol. 2019; 91(2):296-307. [DOI:10.1002/jmv.25303] [PMID]
  37. Aliramaei MR, Khorasgani MR, Rahmani MR, Zarkesh Esfahani SH, Emamzadeh R. Expression of Helicobacter pylori CagL gene in Lactococcus lactis MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microb Pathog. 2019; 142:103926. [DOI:10.1016/j.micpath.2019.103926] [PMID]
  38. Rezaei M, Rabbani Khorasgani M, Zarkesh Esfahani SH, Emamzadeh R, Abtahi H. Production of Brucella melitensis Omp16 protein fused to the human interleukin 2 in Lactococcus lactis MG1363 toward developing a Lactococcus-based vaccine against brucellosis. Can J Microbiol. 2020; 66(1):39-45. [DOI:10.1139/cjm-2019-0261] [PMID]
  39. Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, et al. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Fact. 2015; 14:189. [DOI:10.1186/s12934-015-0378-2] [PMID] [PMCID]
  40. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011; 4(6):603-11. [DOI:10.1038/mi.2011.41] [PMID] [PMCID]
  41. Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin. 2009; 5(4):264-7. [DOI:10.4161/hv.5.4.7553] [PMID]
  42. Robert S, Steidler L. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the type 1 Diabetes case. Microb Cell Fact. 2014; 13 Suppl 1(Suppl 1):S11. [DOI:10.1186/1475-2859-13-S1-S11] [PMID] [PMCID]
  43. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003; 21(7):785-9. [DOI:10.1038/nbt840] [PMID]
  44. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CG. Efficacy of a Lactococcus lactis Δ pyrG vaccine delivery platform expressing chromosomally integrated hly from Listeria monocytogenes. Bioeng Bugs. 2010; 1(1):66-74. [DOI:10.4161/bbug.1.1.10284] [PMID] [PMCID]
  45. Xin KQ, Hoshino Y, Toda Y, Igimi S, Kojima Y, Jounai N, et al. Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood. 2003; 102(1):223-8. [DOI:10.1182/blood-2003-01-0110] [PMID]
  46. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, et al. Mucosal delivery of murine Interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 1998; 66(7):3183-9. [DOI:10.1128/IAI.66.7.3183-3189.1998] [PMID] [PMCID]
  47. Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, et al. Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine. 2010; 28(16):2810-7. [DOI:10.1016/j.vaccine.2010.02.005] [PMID]
  48. Villatoro-Hernandez J, Montes-de-Oca-Luna R, Kuipers OP. Targeting diseases with genetically engineered Lactococcus lactis and its course towards medical translation. Expert Opin Biol Ther. 2011; 11(3):261-7. [DOI:10.1517/14712598.2011.542138] [PMID]
  49. Taghinezhad-S S, Razavilar V, Keyvani H, Razavi MR, Nejadsattari T. Extracellular overproduction of recombinant Iranian HPV-16 E6 oncoprotein in Lactococcus lactis using the NICE system. Future Virol. 2018; 13(10):697-710. [DOI:10.2217/fvl-2018-0026]
  50. Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Prediction of the Omp16 Epitopes for the development of an Epitope-based vaccine against Brucellosis. Infect Disord Drug Targets. 2019; 19(1):36-45. [DOI:10.2174/1871526518666180709121653] [PMID]
  51. Mohseni AH, Taghinezhad-S S, Keyvani H, Razavilar V. Extracellular overproduction of E7 oncoprotein of Iranian human papillomavirus type 16 by genetically engineered Lactococcus lactis. BMC Biotechnology. 2019; 19(1):1-3. https://link.springer.com/article/10.1186/s12896-019-0499-5
  52. Rahimi Y, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Keyvani Amineh H, Rezaei M. [Cloning of immunogenic domain of clostridium difficile toxin B in Lactococcus lactis to develop an oral vaccine based on Lactococcus against Clostridium difficile associated Colitis (Persian)]. J ilam Univ Med Sci. 2019; 27(4):25-34. [DOI:10.29252/sjimu.27.4.25]
  53. Gu Q, Song D, Zhu M. Oral vaccination of mice against helicobacter pylori with recombinant Lactococcus lactis expressing urease subunit B. FEMS Immunol Med Microbiol. 2009; 56(3):197-203. [DOI:10.1111/j.1574-695X.2009.00566.x] [PMID] [PMCID]
  54. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CG. Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8(+) T cells against Listeria monocytogenes in the murine infection model. Vaccine. 2008; 26(41):5304-14. [DOI:10.1016/j.vaccine.2008.07.047] [PMID] [PMCID]
  55. Daniel C, Sebbane F, Poiret S, Goudercourt D, Dewulf J, Mullet C, et al. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine. 2009; 27(8):1141-4. [DOI:10.1016/j.vaccine.2008.12.022] [PMID]
  56. Cheun HI, Kawamoto K, Hiramatsu M, Tamaoki H, Shirahata T, Igimi S, et al. Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol. 2004; 96(6):1347-53. [DOI:10.1111/j.1365-2672.2004.02283.x] [PMID]
  57. Sim AC, Lin W, Tan GK, Sim MS, Chow VT, Alonso S. Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine. 2008; 26(9):1145-54. [DOI:10.1016/j.vaccine.2007.12.047] [PMID]
  58. Perez CA, Eichwald C, Burrone O, Mendoza D. Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol. 2005; 99(5):1158-64. [DOI:10.1111/j.1365-2672.2005.02709.x] [PMID]
  59. Li YJ, Ma GP, Li GW, Qiao XY, Ge JW, Tang LJ, et al. Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. J Biomed Biotechnol. 2010; 2010:708460. [DOI:10.1155/2010/708460] [PMID] [PMCID]
  60. Tang L, Li Y. Oral immunization of mice with recombinant Lactococcus lactis expressing porcine transmissible gastroenteritis virus spike glycoprotein. Virus Genes. 2009; 39(2):238-45. [DOI:10.1007/s11262-009-0390-x] [PMID] [PMCID]
  61. Zhang ZH, Jiang PH, Li NJ, Shi M, Huang W. Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-119. World J Gastroenterol. 2005; 11(44):6975-80. [DOI:10.3748/wjg.v11.i44.6975] [PMID] [PMCID]
  62. Lee P, Faubert GM. Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. Microbiology (Reading). 2006; 152(Pt 7):1981-1990. [DOI:10.1099/mic.0.28877-0] [PMID]
Type of Study: Review Article | Subject: Basic Sciences
Received: 2020/02/26 | Accepted: 2020/08/12

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb